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Global Optimization Toolbox Product Description

1-2

Solve multiple maxima, multiple minima, and nonsmooth optimization problems

Global Optimization Toolbox provides functions that search for global solutions to problems that
contain multiple maxima or minima. Toolbox solvers include surrogate, pattern search, genetic
algorithm, particle swarm, simulated annealing, multistart, and global search. You can use these
solvers for optimization problems where the objective or constraint function is continuous,
discontinuous, stochastic, does not possess derivatives, or includes simulations or black-box
functions. For problems with multiple objectives, you can identify a Pareto front using genetic
algorithm or pattern search solvers.

You can improve solver effectiveness by adjusting options and, for applicable solvers, customizing
creation, update, and search functions. You can use custom data types with the genetic algorithm and
simulated annealing solvers to represent problems not easily expressed with standard data types. The
hybrid function option lets you improve a solution by applying a second solver after the first.

Key Features

* Surrogate solver for problems with lengthy objective function execution times and bound
constraints

* Pattern search solvers for single and multiple objective problems with linear, nonlinear, and bound
constraints

* Genetic algorithm for problems with linear, nonlinear, bound, and integer constraints

» Multiobjective genetic algorithm for problems with linear, nonlinear, and bound constraints
* Particle swarm solver for bound constraints

* Simulated annealing solver for bound constraints

* Multistart and global search solvers for smooth problems with linear, nonlinear, and bound
constraints



Compare Several Global Solvers, Problem-Based

Compare Several Global Solvers, Problem-Based

This example shows how to minimize Rastrigin’s function with several solvers. Each solver has its
own characteristics. The characteristics lead to different solutions and run times. The results,
summarized in Compare Solvers and Solutions on page 1-0 , can help you choose an appropriate
solver for your own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):
ras = @(x, y) 20 + x.”2 + y.”2 - 10*(cos(2*pi*x) + cos(2*pi*y));
Plot the function scaled by 10 in each direction.

rf3 = @(x, y) ras(x/10, y/10);
fsurf(rf3,[-30 30], "ShowContours","on")
title("rastriginsfcn([x/10,y/10])")
xlabel("x")

ylabel("y")

rastriginsfen([x/10,y/10])

50 -

40 -

30

20+

10

Usually you don't know the location of the global minimum of your objective function. To show how
the solvers look for a global solution, this example starts all the solvers around the point [20,30],
which is far from the global minimum.

fminunc Solver

To solve the optimization problem using the default fminunc Optimization Toolbox™ solver, enter:

1-3
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x = optimvar("x");

y = optimvar("y");

prob = optimproblem("Objective",rf3(x,y));
X0.Xx 20;

x0.y 30;

[solf,fvalf,eflagf,outputf] = solve(prob,x0)

Solving problem using fminunc.
Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

solf = struct with fields:
x: 19.8991
y: 29.8486

fvalf = 12.9344

eflagf =
OptimalSolution

outputf = struct with fields:
iterations: 3
funcCount: 5
stepsize: 1.7773e-06
lssteplength: 1
firstorderopt: 2.0461e-09
algorithm: 'quasi-newton'
message: '...'
objectivederivative: "reverse-AD"
solver: 'fminunc'

fminunc solves the problem in very few function evaluations (only five, as shown in the outputf
structure), and reaches a local minimum near the start point. The exit flag indicates that the solution
is a local minimum.

patternsearch Solver

To solve the optimization problem using the patternsearch Global Optimization Toolbox solver,
enter:

x0.Xx 20;
x0.y 30;
[solp, fvalp,eflagp,outputp] = solve(prob,x0,"Solver","patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

solp = struct with fields:
x: 19.8991
y: -9.9496

fvalp = 4.9748
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eflagp =
SolverConvergedSuccessfully

outputp = struct with fields:
function: @(x)fun(x,extraParams)
problemtype: 'unconstrained'
pollmethod: 'gpspositivebasis2n'
maxconstraint: []
searchmethod: []
iterations: 48
funccount: 174
meshsize: 9.5367e-07
rngstate: [1x1 struct]
message: 'Optimization terminated: mesh size less than options.MeshTolerance.'
solver: 'patternsearch'

Like fminunc, patternsearch reaches a local optimum, as shown in the exit flag exitflagp. The
solution is better than the fminunc solution, because it has a lower objective function value.
However, patternsearch takes many more function evaluations, as shown in the output structure.

ga Solver

To solve the optimization problem using the ga Global Optimization Toolbox solver, enter:

rng default % For reproducibility

x0.x = 10*randn(20) + 20;

x0.y = 10*randn(20) + 30; % Random start population near [20,30];
[solg, fvalg,eflagg,outputg] = solve(prob,"Solver","ga")

Solving problem using ga.
Optimization terminated: maximum number of generations exceeded.

solg = struct with fields:
x: 0.0064
y: 7.7057e-04

fvalg = 8.1608e-05

eflagg =
SolverLimitExceeded

outputg = struct with fields:
problemtype: 'unconstrained'
rngstate: [1x1 struct]
generations: 200
funccount: 9453
message: 'Optimization terminated: maximum number of generations exceeded.'
maxconstraint: []
hybridflag: []
solver: 'ga'

ga takes many more function evaluations than the previous solvers, and arrives at a solution near the
global minimum. The solver is stochastic, and can reach a suboptimal solution.
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particleswarm Solver

To solve the optimization problem using the particleswarm Global Optimization Toolbox solver,
enter:

rng default % For reproducibility
[solpso, fvalpso,eflagpso,outputpso] = solve(prob,"Solver","particleswarm")

Solving problem using particleswarm.
Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllterations iterations is less than OPTIONS.FunctionTolerance.

solpso = struct with fields:
x: 7.1467e-07
y: 1.4113e-06

fvalpso = 4.9631e-12

eflagpso =
SolverConvergedSuccessfully

outputpso = struct with fields:
rngstate: [1x1 struct]
iterations: 120
funccount: 2420
message: 'Optimization ended: relative change in the objective value ...
hybridflag: []
solver: 'particleswarm'

The solver takes fewer function evaluations than ga, and arrives at an even more accurate solution.
Again, the solver is stochastic and can fail to reach a global solution.

simulannealbnd Solver

To solve the optimization problem using the simulannealbnd Global Optimization Toolbox solver,
enter:

rng default % For reproducibility

x0.x = 20;

x0.y = 30;

[solsim, fvalsim,eflagsim,outputsim] = solve(prob,x0,"Solver","simulannealbnd")

Solving problem using simulannealbnd.
Optimization terminated: change in best function value less than options.FunctionTolerance.

solsim = struct with fields:
x: 0.0025
y: 0.0018

fvalsim = 1.8311e-05

eflagsim =
SolverConvergedSuccessfully
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outputsim = struct with fields:
iterations: 1967
funccount: 1986
message: 'Optimization terminated: change in best function value less than options.Funct:
rngstate: [1x1 struct]
problemtype: 'unconstrained'’
temperature: [2x1 double]
totaltime: 1.0336
solver: 'simulannealbnd'

The solver takes about the same number of function evaluations as particleswarm, and reaches a
good solution. This solver, too, is stochastic.

surrogateopt Solver

surrogateopt does not require a start point, but does require finite bounds. Set bounds of -70 to
130 in each component. To have the same sort of output as the other solvers, disable the default plot
function.

rng default % For reproducibility
x = optimvar("x","LowerBound",-70,"UpperBound",130);
y = optimvar("y","LowerBound",-70,"UpperBound",130);
prob = optimproblem("Objective",rf3(x,y));
options = optimoptions("surrogateopt","PlotFcn",[1);
[solsur,fvalsur,eflagsur,outputsur] = solve(prob,...
"Solver","surrogateopt", ...
"Options",options)

Solving problem using surrogateopt.
surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

solsur = struct with fields:
X: -0.0033
y: 4.7219e-04

fvalsur = 2.2456e-05

eflagsur =
SolverLimitExceeded

outputsur = struct with fields:
elapsedtime: 3.6268
funccount: 200
constrviolation: O

ineq: [1x1 struct]

rngstate: [1x1 struct]

message: 'surrogateopt stopped because it exceeded the function evaluation limit set

solver: 'surrogateopt'

The solver takes relatively few function evaluations to reach a solution near the global optimum.
However, each function evaluation takes much more time than those of the other solvers.
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Compare Solvers and Solutions

One solution is better than another if its objective function value is smaller than the other. The
following table summarizes the results.

sols = [solf.x solf.y;

solp.x solp.y;
solg.x solg.y;
solpso.x solpso.y;
solsim.x solsim.y;
solsur.x solsur.yl];

fvals = [fvalf;

fvalp;
fvalg;
fvalpso;
fvalsim;
fvalsur];

fevals = [outputf.funcCount;

outputp.funccount;
outputg.funccount;
outputpso.funccount;
outputsim. funccount;
outputsur.funccount];

stats = table(sols, fvals, fevals);

stats.Properties.RowNames = ["fminunc" "patternsearch" "ga" "particleswarm

stats.Properties.VariableNames = ["Solution" "Objective" "# Fevals"];

disp(stats)
Solution Objective # Fevals
fminunc 19.899 29.849 12.934 5
patternsearch 19.899 -9.9496 4.9748 174
ga 0.0063672 0.00077057 8.1608e-05 9453
particleswarm 7.1467e-07 1.4113e-06 4.9631e-12 2420
simulannealbnd 0.002453 0.0017923 1.8311e-05 1986
surrogateopt -0.0033311 0.00047219 2.2456e-05 200

These results are typical:

fminunc quickly reaches the local solution within its starting basin, but does not explore outside
this basin at all. Because the objective function has analytic derivatives, fminunc uses automatic
differentiation and take very few function evaluations to reach an accurate local minimum.

patternsearch takes more function evaluations than fminunc, and searches through several
basins, arriving at a better solution than fminunc.

ga takes many more function evaluations than patternsearch. By chance it arrives at a better
solution. In this case, ga finds a point near the global optimum. ga is stochastic, so its results
change with every run. ga requires extra steps to have an initial population near [20,30].

particleswarm takes fewer function evaluations than ga, but more than patternsearch. In
this case, particleswarm finds a point with lower objective function value than patternsearch
or ga. Because particleswarm is stochastic, its results change with every run. particleswarm
requires extra steps to have an initial population near [20,30].

simulannealbnd takes about the same number of function evaluations as particleswarm. In
this case, simulannealbnd finds a good solution, but not as good as particleswarm. The solver
is stochastic and can arrive at a suboptimal solution.

simulannealbnd"

su
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* surrogateopt stops when it reaches a function evaluation limit, which by default is 200 for a
two-variable problem. surrogateopt requires finite bounds. surrogateopt attempts to find a
global solution, and in this case succeeds. Each function evaluation in surrogateopt takes a
longer time than in most other solvers, because surrogateopt performs many auxiliary
computations as part of its algorithm.

See Also
solve | patternsearch | ga | particleswarm| simulannealbnd | surrogateopt

Related Examples
. “Comparison of Six Solvers” on page 1-10

1-9
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Comparison of Six Solvers
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In this section...

“Function to Optimize” on page 1-10
“Six Solution Methods” on page 1-11

“Compare Syntax and Solutions” on page 1-16

Function to Optimize

This example shows how to minimize Rastrigin’s function with six solvers. Each solver has its own
characteristics. The characteristics lead to different solutions and run times. The results, examined in
“Compare Syntax and Solutions” on page 1-16, can help you choose an appropriate solver for your
own problems.

Rastrigin’s function has many local minima, with a global minimum at (0,0):
Ras(x) = 20 + x% + x% —10(cos2mx + cos2mxy) .

Usually you don't know the location of the global minimum of your objective function. To show how
the solvers look for a global solution, this example starts all the solvers around the point [20, 301,
which is far from the global minimum.

The rastriginsfcn.m file implements Rastrigin’s function. This file comes with Global Optimization
Toolbox software. This example employs a scaled version of Rastrigin’s function with larger basins of
attraction. For information, see “Basins of Attraction” on page 1-26.

rf2 = @(x)rastriginsfcn(x/10);
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rastriginsfen([x/10,y/10])

This example minimizes rf2 using the default settings of fminunc (an Optimization Toolbox™
solver), patternsearch, and GlobalSearch. The example also uses ga and particleswarm with
nondefault options to start with an initial population around the point [20,30]. Because
surrogateopt requires finite bounds, the example uses surrogateopt with lower bounds of -70
and upper bounds of 130 in each variable.

Six Solution Methods

* “fminunc” on page 1-11

* “patternsearch” on page 1-12
* “ga” on page 1-13

* “particleswarm” on page 1-13
* “surrogateopt” on page 1-14
* “GlobalSearch” on page 1-15

fminunc

To solve the optimization problem using the fminunc Optimization Toolbox solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective
= [20,30]; % start point away from the minimum
[xf,ff,flf,of] = fminunc(rf2,x0)

fminunc returns

1-11
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Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xf =
19.8991 29.8486
ff =
12.9344
flf =
1
of =

struct with fields:

iterations: 3
funcCount: 15
stepsize: 1.7776e-06
lssteplength: 1
firstorderopt: 5.9907e-09
algorithm: 'quasi-newton'
message: 'Local minimum found...'

* xfT is the minimizing point.

» ff is the value of the objective, rf2, at xf.

« flf is the exit flag. An exit flag of 1 indicates xf is a local minimum.

* of is the output structure, which describes the fminunc calculations leading to the solution.

patternsearch

To solve the optimization problem using the patternsearch Global Optimization Toolbox solver,
enter:

rf2 = @(x)rastriginsfcn(x/10); % objective
x0 = [20,30]; % start point away from the minimum
[xp,fp,flp,op] = patternsearch(rf2,x0)

patternsearch returns

Optimization terminated: mesh size less than options.MeshTolerance.
Xp =
19.8991 -9.9496

fp =
4.9748
flp =

1
op =

struct with fields:

function: @(x)rastriginsfcn(x/10)
problemtype: 'unconstrained'
pollmethod: 'gpspositivebasis2n'
maxconstraint: []
searchmethod: []
iterations: 48
funccount: 174
meshsize: 9.5367e-07
rngstate: [1x1 struct]
message: 'Optimization terminated: mesh size less than options.MeshTolerance.'

* xp is the minimizing point.

1-12
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+ fp is the value of the objective, rf2, at xp.
+ flpis the exit flag. An exit flag of 1 indicates xp is a local minimum.

* op is the output structure, which describes the patternsearch calculations leading to the
solution.

ga
To solve the optimization problem using the ga Global Optimization Toolbox solver, enter:

rng default % for reproducibility

rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

initpop = 10*randn(20,2) + repmat(x0,20,1);

opts = optimoptions('ga', 'InitialPopulationMatrix',initpop);
[xga, fga,flga,ogal = ga(rf2,2,[],[1,[1,[1,[1,[1,[1,0pts)

initpop is a 20-by-2 matrix. Each row of initpop has mean [20,30], and each element is normally
distributed with standard deviation 10. The rows of initpop form an initial population matrix for the
ga solver.

opts is the options that set initpop as the initial population.
The final line calls ga, using the options.

ga uses random numbers, and produces a random result. In this case ga returns:
Optimization terminated: maximum number of generations exceeded.
Xga =

-0.0042 -0.0024

4.7054e-05

flga =

oga =
struct with fields:
problemtype: 'unconstrained'
rngstate: [1x1 struct]
generations: 200
funccount: 9453

message: 'Optimization terminated: maximum number of generations exceeded.'
maxconstraint: []

* Xga is the minimizing point.
« fga is the value of the objective, rf2, at xga.

« flgais the exit flag. An exit flag of 0 indicates that ga reached a function evaluation limit or an
iteration limit. In this case, ga reached an iteration limit.

* 0ga is the output structure, which describes the ga calculations leading to the solution.
particleswarm

Like ga, particleswarm is a population-based algorithm. So for a fair comparison of solvers,
initialize the particle swarm to the same population as ga.

1-13
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rng default % for reproducibility

rf2 = @(x)rastriginsfcn(x/10); % objective

opts = optimoptions('particleswarm', 'InitialSwarmMatrix',initpop);
[xpso, fpso, flgpso,opso] = particleswarm(rf2,2,[1,[],opts)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllterations iterations is less than OPTIONS.FunctionTolerance.

Xpso =

9.9496 0.0000

fpso =

0.9950

flgpso =

1

opso =
struct with fields:
rngstate: [1x1 struct]
iterations: 56

funccount: 1140
message: 'Optimization ended: relative change in the objective value «over the last OPTIONS.MaxStalllterations iterations is les:

* Xpso is the minimizing point.
+ fpso is the value of the objective, rf2, at xpso.
+ flgpso is the exit flag. An exit flag of 1 indicates xpso is a local minimum.

* opso is the output structure, which describes the particleswarm calculations leading to the
solution.

surrogateopt

surrogateopt does not require a start point, but does require finite bounds. Set bounds of -70 to
130 in each component. To have the same sort of output as the other solvers, disable the default plot
function.

rng default % for reproducibility

b = [-70,-70];

ub = [130,130];

rf2 = @(x)rastriginsfcn(x/10); % objective

opts = optimoptions('surrogateopt', 'PlotFcn',[]1);
[xsur,fsur,flgsur,osur] = surrogateopt(rf2,1lb,ub,opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Xsur =

-0.0033 0.0005

fsur =

2.2456e-05

flgsur =

0

osur =

1-14
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struct with fields:

elapsedtime: 2.3877
funccount: 200
rngstate: [1x1 struct]
message: 'Surrogateopt stopped because it exceeded the function evaluation limit set by «'options.MaxFunctionEvaluations'.'

* xsur is the minimizing point.
« fsur is the value of the objective, rf2, at xsur.

+ flgsuris the exit flag. An exit flag of 0 indicates that surrogateopt halted because it ran out of
function evaluations or time.

* osur is the output structure, which describes the surrogateopt calculations leading to the
solution.

GlobalSearch

To solve the optimization problem using the GlobalSearch solver, enter:

rf2 = @(x)rastriginsfcn(x/10); % objective

x0 = [20,30]; % start point away from the minimum

problem = createOptimProblem('fmincon', 'objective',rf2,...
'x0"',x0);

gs = GlobalSearch;

[xg,fg,flg,0g] = run(gs,problem)

problem is an optimization problem structure. problem specifies the fmincon solver, the rf2
objective function, and x0=[20,30]. For more information on using createOptimProblem, see
“Create Problem Structure” on page 4-4.

Note You must specify Tmincon as the solver for GlobalSearch, even for unconstrained problems.

gs is a default GlobalSearch object. The object contains options for solving the problem. Calling
run(gs,problem) runs problem from multiple start points. The start points are random, so the
following result is also random.

In this case, the run returns:
GlobalSearch stopped because it analyzed all the trial points.

ALl 10 local solver runs converged with a positive local solver exit flag.

Xg =
1.0e-07 *
-0.1405 -0.1405
fg =
0
flg =
1
og =

struct with fields:

funcCount: 2350

1-15
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localSolverTotal: 10

localSolverSuccess: 10

localSolverIncomplete: 0

localSolverNoSolution: 0
message: 'GlobalSearch stopped because it analyzed all the trial points.«~All 10 local solver runs converged with a pc

* Xg is the minimizing point.
« fg is the value of the objective, rf2, at xg.
+ Tflgis the exit flag. An exit flag of 1 indicates all fmincon runs converged properly.

* 0g is the output structure, which describes the GlobalSearch calculations leading to the
solution.

Compare Syntax and Solutions

One solution is better than another if its objective function value is smaller than the other. The
following table summarizes the results, accurate to one decimal.

Results fminunc patternsearch |[ga particleswar [surrogateopt |GlobalSearch
m

solution [19.9 29.9] |[19.9 -9.9] [0 0] [10 O] [0 0] [0 0]

objective 12.9 5 0 1 0 0

# Fevals 15 174 9453 1140 200 2178

These results are typical:

« fminunc quickly reaches the local solution within its starting basin, but does not explore outside
this basin at all. fminunc has a simple calling syntax.

* patternsearch takes more function evaluations than fminunc, and searches through several
basins, arriving at a better solution than fminunc. The patternsearch calling syntax is the
same as that of fminunc.

* ga takes many more function evaluations than patternsearch. By chance it arrived at a better
solution. In this case, ga found a point near the global optimum. ga is stochastic, so its results
change with every run. ga has a simple calling syntax, but there are extra steps to have an initial
population near [20,30].

* particleswarm takes fewer function evaluations than ga, but more than patternsearch. In
this case, particleswarm found a point with lower objective function value than
patternsearch, but higher than ga. Because particleswarm is stochastic, its results change
with every run. particleswarm has a simple calling syntax, but there are extra steps to have an
initial population near [20,30].

* surrogateopt stops when it reaches a function evaluation limit, which by default is 200 for a
two-variable problem. surrogateopt has a simple calling syntax, but requires finite bounds.
surrogateopt attempts to find a global solution, and in this case succeeded. Each function
evaluation in surrogateopt takes a longer time than in most other solvers, because
surrogateopt performs many auxiliary computations as part of its algorithm.

* GlobalSearch run takes the same order of magnitude of function evaluations as ga and
particleswarm, searches many basins, and arrives at a good solution. In this case,
GlobalSearch found the global optimum. Setting up GlobalSearch is more involved than
setting up the other solvers. As the example shows, before calling GlobalSearch, you must
create both a GlobalSearch object (gs in the example), and a problem structure (problem).
Then, you call the run method with gs and problem. For more details on how to run
GlobalSearch, see “Workflow for GlobalSearch and MultiStart” on page 4-3.
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See Also

More About

. “Compare Several Global Solvers, Problem-Based” on page 1-3
. “Solver-Based Optimization Problem Setup”
. “Solver Behavior with a Nonsmooth Problem” on page 1-18
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Solver Behavior with a Nonsmooth Problem

1-18

This example shows the importance of choosing an appropriate solver for optimization problems. It
also shows that a single point of non-smoothness can cause problems for Optimization Toolbox™
solvers.

In general, the solver decision tables provide guidance on which solver is likely to work best for your
problem. For smooth problems, see “Optimization Decision Table”. For nonsmooth problems, see
“Table for Choosing a Solver” on page 1-30 first, and for more information consult “Global
Optimization Toolbox Solver Characteristics” on page 1-31.

A Function with a Single Nonsmooth Point

1/2

The function f(x) = | |x||™'“ is nonsmooth at the point 0, which is the minimizing point. Here is a 2-D

x(1) x(2)

plot using the matrix norm for the 4-D point 0 0

figure
= linspace(-5,5,51);
[xx,yy] = meshgrid(x);
zz = zeros(size(xx));
for ii = 1l:length(x)
for jj = 1l:length(x)
zz(ii,jj) = sqrt(norm([xx(ii,jj),yy(ii,jj);0,01));
end
end

surf(xx,yy,zz)
xlabel('x(1)")
ylabel('x(2)")
title('Norm([x(1),x(2);0,01)~{1/2}")
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Norm([x(1),x(2);0,0]) "2

x(2) 5 5

This example uses matrix norm for a 2-by-6 matrix x. The matrix norm relates to the singular value
decomposition, which is not as smooth as the Euclidean norm. See “2-Norm of Matrix”.

Minimize Using patternsearch

patternsearch is the recommended first solver to try for nonsmooth problems. See “Table for
Choosing a Solver” on page 1-30. Start patternsearch from a nonzero 2-by-6 matrix x0, and
attempt to locate the minimum of f. For this attempt, and all others, use the default solver options.

Return the solution, which should be near zero, the objective function value, which should likewise be

near zero, and the number of function evaluations taken.

fun = @(x)norm([x(1:6);x(7:12)]1)"(1/2);
x0 = [1:6;7:12];

rng default

X0 = x0 + rand(size(x0))

X0 = 2x6

1.8147 2.1270 3.6324 4.2785
7.9058 8.9134 9.0975 10.5469

6.1576
12.9706

[xps, fvalps,eflagps,outputps] = patternsearch(fun,x0);

Optimization terminated: mesh size less than options.MeshTolerance.

xps, fvalps,eflagps,outputps.funccount
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Xps = 2x6
10-4 x

0.1116 -0.1209 0.3503 -0.0520 -0.1270 0.2031
-0.3082 -0.1526 0.0623 0.0652 0.4479 0.1173
fvalps = 0.0073
eflagps = 1
ans = 10780

patternsearch reaches a good solution, as evinced by exit flag 1. However, it takes over 10,000
function evaluations to converge.

Minimize Using fminsearch

The documentation states that fminsearch sometimes can handle discontinuities, so this is a
reasonable option.

[xfms, fvalfms,eflagfms,outputfms] = fminsearch(fun,x0);
Exiting: Maximum number of function evaluations has been exceeded

- increase MaxFunEvals option.
Current function value: 3.197063

xfms, fvalfms,eflagfms,outputfms. funcCount
xfms = 2x6
2.2640 1.1747 9.0693 8.1652 1.7367 -1.2958
3.7456 1.2694 0.2714 -3.7942 3.8714 1.9290
fvalfms = 3.1971
eflagfms = 0
ans = 2401

Using default options, fminsearch runs out of function evaluations before it converges to a solution.
Exit flag 0 indicates this lack of convergence. The reported solution is poor.

Use particleswarm

particleswarmis recommended as the next solver to try. See “Choosing Between Solvers for
Nonsmooth Problems” on page 1-33.

[xpsw, fvalpsw,eflagpsw,outputpsw] = particleswarm(fun,12);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

xpsw, fvalpsw,eflagpsw,outputpsw. funccount

xpsw = Ix12
10-12 X
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-0.0386 -0.1282 -0.0560 0.0904 0.0771 -0.0541 -0.1189 0.1290 -0.0032 0.

fvalpsw = 4.5222e-07
eflagpsw = 1

ans = 37200

particleswarm finds an even more accurate solution than patternsearch, but takes over 35,000
function evaluations. Exit flag 1 indicates that the solution is good.

Use ga

ga is a popular solver, but is not recommended as the first solver to try. See how well it works on this
problem.

[xga, fvalga,eflagga,outputgal = ga(fun,12);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
xga, fvalga,eflagga,outputga.funccount

xga = Ix12

-0.0061 -0.0904 0.0816 -0.0484 0.0799 -0.1925 0.0048 0.3581 0.0848 0.

fvalga = 0.6257
eflagga = 1
ans = 65190

ga does not find as good a solution as patternsearch or particleswarm, and takes about twice as
many function evaluations as particleswarm. Exit flag 1 is misleading in this case.

Use fminunc from Optimization Toolbox

fminunc is not recommended for nonsmooth functions. See how it performs on this one.
[xfmu, fvalfmu,eflagfmu,outputfmul = fminunc(fun,x0);

Local minimum possible.

fminunc stopped because the size of the current step is less than
the value of the step size tolerance.

xfmu, fvalfmu,eflagfmu, outputfmu. funcCount
xfmu = 2x6
-0.5844  -0.9726 -0.4356 0.1467 0.3263 -0.1002
-0.0769 -0.1092 -0.3429 -0.6856 -0.7609 -0.6524
fvalfmu = 1.1269
eflagfmu = 2

ans = 442
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The fminunc solution is not as good as the ga solution. However, fminunc reaches the rather poor
solution in relatively few function evaluations. Exit flag 2 means you should take care, the first-order
optimality conditions are not met at the reported solution.

Use fmincon from Optimization Toolbox

fmincon can sometimes minimize nonsmooth functions. See how it performs on this one.
[xfmc, fvalfmc,eflagfmc,outputfmc] = fmincon(fun,x0);

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

xfmc, fvalfmc,eflagfmc, outputfmc. funcCount

xfmc = 2x6
10-10 X

0.6804 0.2322 -0.5667 0.6732 0.5968 -0.4214
-0.6220 -0.0403 0.7720 -0.5281 0.0649 -0.7840

fvalfmc = 1.2460e-05
eflagfmc = 2

ans = 998

fmincon with default options produces an accurate solution after fewer than 1000 function
evaluations. Exit flag 2 does not mean that the solution is inaccurate, but that the first-order
optimality conditions are not met. This is because the gradient of the objective function is not zero at
the solution.

Summary of Results

Choosing the appropriate solver leads to better, faster results. This summary shows how disparate
the results can be. The solution quality is 'Poor' if the objective function value is greater than 0.1,
'Good' if the value is smaller than 0.01, and 'Mediocre' otherwise.

Solver = {'patternsearch';'fminsearch'; 'particleswarm';'ga'; " 'fminunc';'fmincon'};

SolutionQuality = {'Good'; 'Poor';'Good"';'Poor'; 'Poor"'; " 'Good'};

Fval = [fvalps, fvalfms, fvalpsw, fvalga, fvalfmu, fvalfmc]"';

NumEval = [outputps.funccount,outputfms.funcCount,outputpsw.funccount, ...
outputga.funccount, outputfmu.funcCount,outputfmc. funcCount]';

results = table(Solver,SolutionQuality,FVal,NumEval)

results=6x4 table

Solver SolutionQuality Fval NumEval
{'patternsearch'} {'Good"'} 0.0072656 10780
{'fminsearch' } {'Poor'} 3.1971 2401
{'particleswarm'} {'Good"'} 4.5222e-07 37200
{'ga’ } {'Poor'} 0.62572 65190
{'fminunc' } {'Poor'} 1.1269 442



Solver Behavior with a Nonsmooth Problem

{'fmincon' } {'Good"'} 1.246e-05 998

Another view of the results.

figure

hold on

for ii = 1l:length(FVal)
clr = rand(1,3);
plot(NumEval(ii),FVal(ii), 'o"', 'MarkerSize', 10, 'MarkerEdgeColor',clr, 'MarkerFaceColor',clr)
text(NumEval(ii),FVal(ii)+0.2,Solver{ii}, 'Color',clr);

end

ylabel('Fval")

xlabel('NumEval'")

title('Reported Minimum and Evaluations By Solver')

hold off
Reported Minimum and Evaluations By Solver
356
fminsearch
o
3 -
257
2t
™
==
T8
1671
fminunc
9o
1 F
ga
0ar
fmincon  patternsearch particleswarm
0 . . I i . I I I i
1] 1 2 3 4 5 6 7
NumEval « 104

While particleswarm achieves the lowest objective function value, it does so by taking over three
times as many function evaluations as patternsearch, and over 30 times as many as fmincon.
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fmincon is not generally recommended for nonsmooth problems. It is effective in this case, but this
case has just one nonsmooth point.

See Also

More About

. “Comparison of Six Solvers” on page 1-10
. “Table for Choosing a Solver” on page 1-30
. “Global Optimization Toolbox Solver Characteristics” on page 1-31
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What Is Global Optimization?

In this section...

“Local vs. Global Optima” on page 1-25

“Basins of Attraction” on page 1-26

Local vs. Global Optima

Optimization is the process of finding the point that minimizes a function. More specifically:
* Alocal minimum of a function is a point where the function value is smaller than or equal to the
value at nearby points, but possibly greater than at a distant point.

* A global minimum is a point where the function value is smaller than or equal to the value at all
other feasible points.

Global minimum

Local minimum

Generally, Optimization Toolbox solvers find a local optimum. (This local optimum can be a global
optimum.) They find the optimum in the basin of attraction of the starting point. For more
information, see “Basins of Attraction” on page 1-26.

In contrast, Global Optimization Toolbox solvers are designed to search through more than one basin
of attraction. They search in various ways:

* GlobalSearch and MultiStart generate a number of starting points. They then use a local
solver to find the optima in the basins of attraction of the starting points.

* ga uses a set of starting points (called the population) and iteratively generates better points from
the population. As long as the initial population covers several basins, ga can examine several
basins.

* particleswarm, like ga, uses a set of starting points. particleswarm can examine several
basins at once because of its diverse population.

* simulannealbnd performs a random search. Generally, simulannealbnd accepts a point if it is
better than the previous point. simulannealbnd occasionally accepts a worse point, in order to
reach a different basin.

* patternsearch looks at a number of neighboring points before accepting one of them. If some
neighboring points belong to different basins, patternsearch in essence looks in a number of
basins at once.

* surrogateopt begins by quasirandom sampling within bounds, looking for a small objective
function value. surrogateopt uses a merit function that, in part, gives preference to points that
are far from evaluated points, which is an attempt to reach a global solution. After it cannot
improve the current point, surrogateopt resets, causing it to sample widely within bounds
again. Resetting is another way surrogateopt searches for a global solution.
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Basins of Attraction

If an objective function f(x) is smooth, the vector -Vf(x) points in the direction where f(x) decreases
most quickly. The equation of steepest descent, namely

Gx(t) = - TF((),

yields a path x(t) that goes to a local minimum as t gets large. Generally, initial values x(0) that are
close to each other give steepest descent paths that tend to the same minimum point. The basin of
attraction for steepest descent is the set of initial values leading to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows different basins of
attraction with different line styles, and it shows directions of steepest descent with arrows. For this
and subsequent figures, black dots represent local minima. Every steepest descent path, starting at a
point x(0), goes to the black dot in the basin containing x(0).

f(x)

[ ]

%
/

- W — g  — g

L ]
[ ]
Y
e

The following figure shows how steepest descent paths can be more complicated in more dimensions.

The following figure shows even more complicated paths and basins of attraction.
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Constraints can break up one basin of attraction into several pieces. For example, consider
minimizing y subject to:

vz
o y=5-4(x-2)2

The figure shows the two basins of attraction with the final points.
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The steepest descent paths are straight lines down to the constraint boundaries. From the constraint
boundaries, the steepest descent paths travel down along the boundaries. The final point is either
(0,0) or (11/4,11/4), depending on whether the initial x-value is above or below 2.

See Also

More About

. “Visualize the Basins of Attraction” on page 4-24
. “Comparison of Six Solvers” on page 1-10
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Optimization Workflow

To solve an optimization problem:

1 Decide what type of problem you have, and whether you want a local or global solution (see
“Local vs. Global Optima” on page 1-25). Choose a solver per the recommendations in “Table for
Choosing a Solver” on page 1-30.

2 Write your objective function and, if applicable, constraint functions per the syntax in “Compute
Objective Functions” on page 2-2 and “Write Constraints” on page 2-6.

3 Set appropriate options using optimoptions, or prepare a GlobalSearch or MultiStart
problem as described in “Workflow for GlobalSearch and MultiStart” on page 4-3. For details,
see “Pattern Search Options” on page 15-7, “Particle Swarm Options” on page 15-44,

“Genetic Algorithm Options” on page 15-23, “Simulated Annealing Options” on page 15-57, or
“Surrogate Optimization Options” on page 15-50.

4 Run the solver.

5 Examine the result. For information on the result, see “Solver Outputs and Iterative Display” or
Examine Results for GlobalSearch or MultiStart.

6 If the result is unsatisfactory, change options or start points or otherwise update your
optimization and rerun it. For information, see “Global Optimization Toolbox Solver
Characteristics” on page 1-31 or Improve Results. For information on improving solutions that
applies mainly to smooth problems, see “When the Solver Fails”, “When the Solver Might Have
Succeeded”, or “When the Solver Succeeds”.

See Also

More About

“Solver-Based Optimization Problem Setup”
“What Is Global Optimization?” on page 1-25
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Table for Choosing a Solver

1-30

Choose a solver based on problem characteristics and on the type of solution you want. “Solver
Characteristics” on page 1-34 contains more information to help you decide which solver is likely to
be most suitable. This table gives recommendations that are suitable for most problems.

Problem Type

Recommended Solver

Smooth (objective twice differentiable), and you
want a local solution

An appropriate Optimization Toolbox solver; see
“Optimization Decision Table”

Smooth (objective twice differentiable), and you
want a global solution or multiple local solutions

GlobalSearch or MultiStart

Nonsmooth, and you want a local solution

patternsearch

Nonsmooth, and you want a global solution or
multiple local solutions

surrogateopt or patternsearch with several
initial points x0

To start patternsearch at multiple points when you have finite bounds 1b and ub on every

component, try:

x0 = lb + rand(size(1lb)).*(ub - 1b);

Many other solvers provide different solution algorithms, including the genetic algorithm solver ga
and the particleswarm solver. Try some of them if the recommended solvers do not perform well on
your problem. For details, see “Global Optimization Toolbox Solver Characteristics” on page 1-31.

See Also

Related Examples

. “Solver Behavior with a Nonsmooth Problem” on page 1-18

More About
. “Optimization Workflow” on page 1-29

. “Global Optimization Toolbox Solver Characteristics” on page 1-31
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Global Optimization Toolbox Solver Characteristics

In this section...

“Explanation of “Desired Solution

“Solver Choices” on page 1-31

nn

on page 1-31

“Choosing Between Solvers for Smooth Problems” on page 1-33
“Choosing Between Solvers for Nonsmooth Problems” on page 1-33

“Solver Characteristics” on page 1-34
“Why Are Some Solvers Objects?” on page 1-36

Solver Choices

This section describes Global Optimization Toolbox solver characteristics. The section includes
recommendations for obtaining results more effectively.

To achieve better or faster solutions, first try tuning the recommended solvers on page 1-30 by

setting appropriate options or bounds. If the results are unsatisfactory, try other solvers.

Desired Solution

Smooth Objective and Constraints

Nonsmooth Objective or
Constraints

“Explanation of “Desired
Solution”” on page 1-31

“Choosing Between Solvers for Smooth
Problems” on page 1-33

“Choosing Between Solvers for

Nonsmooth Problems” on page 1-33

Single local solution

Optimization Toolbox functions; see
“Optimization Decision Table”

fminbnd, patternsearch,

fminsearch, ga, particleswarm,

simulannealbnd, surrogateopt

Multiple local solutions

GlobalSearch, MultiStart

patternsearch, ga,

particleswarm, simulannealbnd,

or surrogateopt started from

multiple initial points x0 or from

multiple initial populations

Single global solution

GlobalSearch, MultiStart,
patternsearch, particleswarm,
ga, simulannealbnd, surrogateopt

patternsearch, ga,

particleswarm, simulannealbnd,

surrogateopt

Single local solution using
parallel processing

MultiStart, Optimization Toolbox
functions

patternsearch, ga,

particleswarm, surrogateopt

Multiple local solutions using |MultiStart patternsearch, ga, or

parallel processing particleswarm started from multiple
initial points x0 or from multiple initial
populations

Single global solution using [MultiStart patternsearch, ga,

parallel processing

particleswarm, surrogateopt

Explanation of “Desired Solution”

To understand the meaning of the terms in “Desired Solution,” consider the example
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f(x)=100x3(1-x)%-x,

which has local minima x1 near 0 and x2 near 1:

100 x® (1 -x)% - x

1.2
The minima are located at:

fun =
x1
x1

0.0051
X2
X2

1.0049

Description of the Terms

Term

Single local solution

@(x) (100*x™2*(x - 1)72 - Xx);
fminbnd(fun,-0.1,0.1)

fminbnd(fun,0.9,1.1)

Meaning

Multiple local solutions

Single global solution

Find one local solution, a point x where the objective function f(x)
is a local minimum. For more details, see “Local vs. Global Optima”
on page 1-25. In the example, both x1 and x2 are local solutions.

Find a set of local solutions. In the example, the complete set of
local solutions is {x1,x2}.

1-32

Find the point x where the objective function f{(x) is a global
minimum. In the example, the global solution is x2.
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Choosing Between Solvers for Smooth Problems

» “Single Global Solution” on page 1-33
» “Multiple Local Solutions” on page 1-33

Single Global Solution

1 Try GlobalSearch first. It is most focused on finding a global solution, and has an efficient local
solver, fmincon.

2 TryMultiStart next. It has efficient local solvers, and can search a wide variety of start points.

3 Try patternsearch next. It is less efficient, since it does not use gradients. However,
patternsearch is robust and is more efficient than the remaining local solvers To search for a
global solution, start patternsearch from a variety of start points.

4 Try surrogateopt next. surrogateopt attempts to find a global solution using the fewest
objective function evaluations. surrogateopt has more overhead per function evaluation than
most other solvers. surrogateopt requires finite bounds, and accepts integer constraints,
linear constraints, and nonlinear inequality constraints.

5 Tryparticleswarm next, if your problem is unconstrained or has only bound constraints.
Usually, particleswarm is more efficient than the remaining solvers, and can be more efficient
than patternsearch.

6 Try ga next. It can handle all types of constraints, and is usually more efficient than
simulannealbnd.

7 Try simulannealbnd last. It can handle problems with no constraints or bound constraints.
simulannealbnd is usually the least efficient solver. However, given a slow enough cooling
schedule, it can find a global solution.

Multiple Local Solutions

GlobalSearch and MultiStart both provide multiple local solutions. For the syntax to obtain
multiple solutions, see “Multiple Solutions” on page 4-17. GlobalSearch and MultiStart differ in
the following characteristics:

* MultiStart can find more local minima. This is because GlobalSearch rejects many generated
start points (initial points for local solution). Essentially, GlobalSearch accepts a start point only
when it determines that the point has a good chance of obtaining a global minimum. In contrast,
MultiStart passes all generated start points to a local solver. For more information, see
“GlobalSearch Algorithm” on page 4-35.

* MultiStart offers a choice of local solver: fmincon, fminunc, lsqcurvefit, or Lsqnonlin.
The GlobalSearch solver uses only fmincon as its local solver.

* GlobalSearch uses a scatter-search algorithm for generating start points. In contrast,
MultiStart generates points uniformly at random within bounds, or allows you to provide your
own points.

* MultiStart can run in parallel. See “How to Use Parallel Processing in Global Optimization
Toolbox” on page 14-11.

Choosing Between Solvers for Nonsmooth Problems

Choose the applicable solver with the lowest number. For problems with integer constraints, use ga.
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Use fminbnd first on one-dimensional bounded problems only. fminbnd provably converges
quickly in one dimension.

Use patternsearch on any other type of problem. patternsearch provably converges, and
handles all types of constraints.

Try surrogateopt for problems that have time-consuming objective functions. surrogateopt
searches for a global solution. surrogateopt requires finite bounds, and accepts integer
constraints, linear constraints, and nonlinear inequality constraints.

Try fminsearch next for low-dimensional unbounded problems. fminsearch is not as general
as patternsearch and can fail to converge. For low-dimensional problems, fminsearch is
simple to use, since it has few tuning options.

Try particleswarm next on unbounded or bound-constrained problems. particleswarm has
little supporting theory, but is often an efficient algorithm.

Try ga next. ga has little supporting theory and is often less efficient than patternsearch or
particleswarm. ga handles all types of constraints. ga and surrogateopt are the only Global
Optimization Toolbox solvers that accept integer constraints.

Try simulannealbnd last for unbounded problems, or for problems with bounds.
simulannealbnd provably converges only for a logarithmic cooling schedule, which is
extremely slow. simulannealbnd takes only bound constraints, and is often less efficient than

ga.

Solver Characteristics

Solver

Convergence Characteristics

GlobalSearch Fast convergence to local optima for |Deterministic iterates

smooth problems Gradient-based

Automatic stochastic start points

Removes many start points heuristically

MultiStart

Fast convergence to local optima for |Deterministic iterates

smooth problems Can run in parallel; see “How to Use

Parallel Processing in Global Optimization
Toolbox” on page 14-11

Gradient-based

Stochastic or deterministic start points, or
combination of both

Automatic stochastic start points

Runs all start points

Choice of local solver: fmincon, fminunc,
lsqcurvefit, or Lsgnonlin

patternsearch Proven convergence to local Deterministic iterates

1-34

optimum; slower than gradient-

Can run in parallel; see “How to Use
based solvers

Parallel Processing in Global Optimization
Toolbox” on page 14-11

No gradients
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Solver

Convergence

Characteristics

User-supplied start point

surrogateopt

Proven convergence to global
optimum for bounded problems;
slower than gradient-based solvers;
generally stops by reaching a
function evaluation limit or other
limit

Stochastic iterates

Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 14-11

Best used for time-consuming objective
functions

Requires bound constraints, accepts linear
constraints and nonlinear inequality
constraints

Allows integer constraints; see “Mixed-
Integer Surrogate Optimization” on page
10-62

No gradients

Automatic start points or user-supplied
points, or a combination of both

particleswarm

No convergence proof

Stochastic iterates

Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 14-11

Population-based

No gradients

Automatic start population or user-
supplied population, or a combination of
both

Only bound constraints

ga

No convergence proof

Stochastic iterates

Can run in parallel; see “How to Use
Parallel Processing in Global Optimization
Toolbox” on page 14-11

Population-based

No gradients

Allows integer constraints; see “Mixed
Integer ga Optimization” on page 7-37

Automatic start population or user-
supplied population, or a combination of
both

simulannealbnd

Proven to converge to global
optimum for bounded problems with
very slow cooling schedule

Stochastic iterates

No gradients

User-supplied start point

Only bound constraints

1-35



1 Introducing Global Optimization Toolbox Functions

Explanation of some characteristics:

* Convergence — Solvers can fail to converge to any solution when started far from a local
minimum. When started near a local minimum, gradient-based solvers converge to a local
minimum quickly for smooth problems. patternsearch provably converges for a wide range of
problems, but the convergence is slower than gradient-based solvers. Both ga and
simulannealbnd can fail to converge in a reasonable amount of time for some problems,
although they are often effective.

» Iterates — Solvers iterate to find solutions. The steps in the iteration are iterates. Some solvers
have deterministic iterates. Others use random numbers and have stochastic iterates.

* Gradients — Some solvers use estimated or user-supplied derivatives in calculating the iterates.
Other solvers do not use or estimate derivatives, but use only objective and constraint function
values.

» Start points — Most solvers require you to provide a starting point for the optimization in order to
obtain the dimension of the decision variables. ga and surrogateopt do not require any starting
points, because they take the dimension of the decision variables as an input or infer dimensions
from bounds. These solvers generate a start point or population automatically, or they accept a
point or points that you supply.

Compare the characteristics of Global Optimization Toolbox solvers to Optimization Toolbox solvers.

Solver Convergence Characteristics
fmincon, fminunc, Proven quadratic convergence to Deterministic iterates
fsemin f,. lsqgcurvefit, local optima for smooth problems T —]
lsgnonlin ; : :
User-supplied starting point
fminsearch No convergence proof — Deterministic iterates
counterexamples exist. No gradients
User-supplied start point
No constraints
fminbnd Proven convergence to local optima |Deterministic iterates
for smoqth problems, slower than No gradients
quadratic. . .
User-supplied start interval
Only one-dimensional problems
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All these Optimization Toolbox solvers:

* Have deterministic iterates
* Require a start point or interval
* Search just one basin of attraction

Why Are Some Solvers Objects?

GlobalSearch and MultiStart are objects. What does this mean for you?

* You create a GlobalSearch or MultiStart object before running your problem.
* You can reuse the object for running multiple problems.
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* GlobalSearch and MultiStart objects are containers for algorithms and global options. You
use these objects to run a local solver multiple times. The local solver has its own options.

For more information, see the “Classes” documentation.

See Also

Related Examples

. “Solver Behavior with a Nonsmooth Problem” on page 1-18

More About
. “Optimization Workflow” on page 1-29
. “Table for Choosing a Solver” on page 1-30
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* “Compute Objective Functions” on page 2-2

* “Maximizing vs. Minimizing” on page 2-5

* “Write Constraints” on page 2-6

* “Set and Change Options” on page 2-9
“View Options” on page 2-10



2 Write Files for Optimization Functions

Compute Objective Functions

2-2

In this section...

“Objective (Fitness) Functions” on page 2-2
“Write a Function File” on page 2-2
“Write a Vectorized Function” on page 2-3

“Gradients and Hessians” on page 2-4

Objective (Fitness) Functions

To use Global Optimization Toolbox functions, first write a file (or an anonymous function) that
computes the function you want to optimize. This is called an objective function for most solvers, or
fitness function for ga. The function should accept a vector, whose length is the number of
independent variables, and return a scalar. For gamultiobj, the function should return a row vector
of objective function values. For vectorized solvers, the function should accept a matrix, where each
row represents one input vector, and return a vector of objective function values. This section shows
how to write the file.

Write a Function File

This example shows how to write a file for the function you want to optimize. Suppose that you want
to minimize the function

flx) = exp(—(x% + x%))(x% — 2Xx1Xg + 6x1 + 4X% - 3x2).

The file that computes this function must accept a vector x of length 2, corresponding to the variables
x; and x,, and return a scalar equal to the value of the function at x.

1 Select New > Script (Ctrl+N) from the MATLAB® File menu. A new file opens in the editor.
2 Enter the following two lines of code:

function z = my fun(x)
z = X(1)72 - 2*x(1)*x(2) + 6*x(1) + 4*x(2)"2 - 3*x(2);

3  Save the file in a folder on the MATLAB path.

Check that the file returns the correct value.
my fun([2 31)

ans =
31

For gamultiobj, suppose you have three objectives. Your objective function returns a three-element
vector consisting of the three objective function values:

function z = my fun(x)
z = zeros(1,3); % allocate output

z(1) = x(1)72 - 2*%x(1)*x(2) + 6*x(1) + 4*x(2)°2 - 3*x(2);
z(2) = x(1)*x(2) + cos(3*x(2)/(2+x(1)));
z(3) = tanh(x(1) + x(2));
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Write a Vectorized Function

The ga, gamultiobj, paretosearch, particleswarm, and patternsearch solvers optionally
compute the objective functions of a collection of vectors in one function call. This method can take
less time than computing the objective functions of the vectors serially. This method is called a
vectorized function call.

To compute in vectorized fashion:
* Write your objective function to:

* Accept a matrix with an arbitrary number of rows.
* Return the vector of function values of each row.

* Forgamultiobj or paretosearch, return a matrix, where each row contains the objective
function values of the corresponding input matrix row.

» If you have a nonlinear constraint, be sure to write the constraint in a vectorized fashion. For
details, see “Vectorized Constraints” on page 2-7.

» Setthe UseVectorized option to true using optimoptions. For patternsearch or
paretosearch, also set UseCompletePoll to true. Be sure to pass the options to the solver.

For example, to write the objective function of “Write a Function File” on page 2-2 in a vectorized
fashion,

function z = my_ fun(x)
z = Xx(:,1).72 - 2%x(:,1).*x(:,2) + 6*x(:,1) + ...
4*%x(:,2).72 - 3*x(:,2);
To use my_ fun as a vectorized objective function for patternsearch:
options = optimoptions('patternsearch', 'UseCompletePoll’', true, 'UseVectorized',true);
[x fval] = patternsearch(@my_fun,[1 11,[1,[1,[1,[1,[1,[1,...
[1,options);

To use my_ fun as a vectorized objective function for ga:

options = optimoptions('ga', 'UseVectorized', true);
[x fvall = ga(@emy_fun,2,[1,[1,[1,01,[1,[1,[],0options);

For gamultiobj or paretosearch,

function z = my_ fun(x)

z = zeros(size(x,1),3); % allocate output

z(:,1) = x(:,1).72 - 2%x(:,1).*x(:,2) + 6*x(:,1) +
4*x(:,2).72 - 3*x(., ),

z(:,2) = x(:,1).*%x(:,2) + cos(3*x(:,2)./(2+x(:,1)));

z(:,3) = tanh(x(: ) x(:,2));

To use my_ fun as a vectorized objective function for gamultiobj:

options = optimoptions('ga', 'UseVectorized',true);
[x fval] = gamultiobj(@my fun,2,[],[],[]1,[1,[],[],options);

For more information on writing vectorized functions for patternsearch, see “Vectorize the
Objective and Constraint Functions” on page 5-77. For more information on writing vectorized
functions for ga, see “Vectorize the Fitness Function” on page 7-98.
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Gradients and Hessians

If you use GlobalSearch or MultiStart, your objective function can return derivatives (gradient,
Jacobian, or Hessian). For details on how to include this syntax in your objective function, see

“Including Gradients and Hessians”. Use optimoptions to set options so that your solver uses the
derivative information:

Local Solver = fmincon, fminunc

Condition

Option Setting

Objective function contains gradient

'SpecifyObjectiveGradient' = true; see
“How to Include Gradients”

Objective function contains Hessian

'HessianFcn' = 'objective' or a function
handle; see “Including Hessians”

Constraint function contains gradient

'SpecifyConstraintGradient' = true; see
“Including Gradients in Constraint Functions”

Local Solver = Isqcurvefit, Isqnonlin

Condition

Option Setting

Objective function contains Jacobian

'SpecifyObjectiveGradient' = true

See Also

Related Examples

“Vectorize the Objective and Constraint Functions” on page 5-77

“Vectorize the Fitness Function” on page 7-98

“Maximizing vs. Minimizing” on page 2-5
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Maximizing vs. Minimizing

Global Optimization Toolbox optimization functions minimize the objective (or fitness) function. That
is, they solve problems of the form

minf(x)
X

If you want to maximize f(x), minimize -f(x), because the point at which the minimum of -f(x) occurs is
the same as the point at which the maximum of f(x) occurs.

For example, suppose you want to maximize the function
f(x) = exp(—(x% + x%))(x% - 2X1Xg + 6x1 + 4x% - 3x2) .
Write a function to compute
X)=-f(x)= - exp(—(x% + x%))(x% - 2X1X9 + 6x1 + 4x§ - 3x2),

and then minimize g(x). Start from the point x0 = [0 0].
@(x)exp(-(x(1)"2 + x(2)72))*(x(1)"2 - 2*x(1)*x(2) + 6*x(1l) + 4*x(2)"2 - 3*x(2));
@( )-T(x);

f
g
X0 [0 01;

[xmln gmin] = fminsearch(g,x0)
xmin =

0.5550 -0.5919

gmin =
-3.8683

The maximum of fis the value of f(xmin), which is -gmin.
f(xmin)

ans =

3.8683

See Also

Related Examples
. “Compute Objective Functions” on page 2-2
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In this section...

“Consult Optimization Toolbox Documentation” on page 2-6
“Set Bounds” on page 2-6

“Ensure ga Options Maintain Feasibility” on page 2-6
“Gradients and Hessians” on page 2-7

“Vectorized Constraints” on page 2-7

Consult Optimization Toolbox Documentation

Many Global Optimization Toolbox functions accept bounds, linear constraints, or nonlinear
constraints. To see how to include these constraints in your problem, see “Write Constraints”. Try
consulting these pertinent links to sections:

* “Bound Constraints”

* “Linear Constraints”

* “Nonlinear Constraints”

Note The surrogateopt solver uses a different syntax for nonlinear constraints than other solvers,
and requires finite bounds on all components. For details, see the function reference page and
“Convert Nonlinear Constraints Between surrogateopt Form and Other Solver Forms” on page 10-
74.

Set Bounds

It is more important to set bounds for global solvers than for local solvers. Global solvers use bounds
in a variety of ways:

* GlobalSearch requires bounds for its scatter-search point generation. If you do not provide
bounds, GlobalSearch bounds each component below by -9999 and above by 10001. However,
these bounds can easily be inappropriate.

» If you do not provide bounds and do not provide custom start points, MultiStart bounds each
component below by -1000 and above by 1000. However, these bounds can easily be
inappropriate.

* ga uses bounds and linear constraints for its initial population generation. For unbounded
problems, ga uses a default of 0 as the lower bound and 1 as the upper bound for each dimension
for initial point generation. For bounded problems, and problems with linear constraints, ga uses
the bounds and constraints to make the initial population.

* simulannealbnd and patternsearch do not require bounds, although they can use bounds.

Ensure ga Options Maintain Feasibility

The ga solver generally maintains strict feasibility with respect to bounds and linear constraints. This
means that, at every iteration, all members of a population satisfy the bounds and linear constraints.
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However, you can set options that cause this feasibility to fail. For example if you set MutationFcn
to @mutationgaussian or @mutationuniform, the mutation function does not respect constraints,
and your population can become infeasible. Similarly, some crossover functions can cause infeasible
populations, although the default gacreationlinearfeasible does respect bounds and linear
constraints. Also, ga can have infeasible points when using custom mutation or crossover functions.

To ensure feasibility, use the default crossover and mutation functions for ga. Be especially careful
that any custom functions maintain feasibility with respect to bounds and linear constraints.

Note When a problem has integer constraints, ga ensures that all operators (mutation, crossover,
and creation) return feasible populations with respect to bounds, linear constraints, and integer
constraints at each iteration. This feasibility holds to within a small tolerance.

Gradients and Hessians

If you use GlobalSearch or MultiStart with fmincon, your nonlinear constraint functions can
return derivatives (gradient or Hessian). For details, see “Gradients and Hessians” on page 2-4.

Vectorized Constraints

The ga and patternsearch solvers optionally compute the nonlinear constraint functions of a
collection of vectors in one function call. This method can take less time than computing the objective
functions of the vectors serially. This method is called a vectorized function call.

For the solver to compute in a vectorized manner, you must vectorize both your objective (fitness)
function and nonlinear constraint function. For details, see “Vectorize the Objective and Constraint
Functions” on page 5-77.

As an example, suppose your nonlinear constraints for a three-dimensional problem are
2 2 2
X1 X2 | X3
e — e _—<
g+t t25=0
x3 = cosh(x] + x9)
X1X2X3 = 2.
The following code gives these nonlinear constraints in a vectorized fashion, assuming that the rows

of your input matrix X are your population or input vectors:

function [c ceq] = nlinconst(x)

c(:,1) = x(:,1).72/4 + x(:,2).72/9 + x(:,3).72/25 - 6;
c(:,2) = cosh(x(:,1) + x(:,2)) - x(:,3);
ceq = x(:,1).*x(:,2).*x(:,3) - 2;

For example, minimize the vectorized quadratic function

function y = vfun(x)
y = -x(:,1).72 - x(:,2).72 - x(:,3).72;

over the region with constraints nlinconst using patternsearch:

options = optimoptions('patternsearch', 'UseCompletePoll’, true, 'UseVectorized',true);
[x fval] = patternsearch(@vfun,[1,1,2],[1,[1,[1,[1,[1,I[1,
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@nlinconst,options)
Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

X =
0.2191 0.7500 12.1712

fval =
-148.7480

Using ga:
options = optimoptions('ga', 'UseVectorized', true);
[x fvall = ga(@vfun,3,[1,[1,[1,[1,[1,[]1,@nlinconst,options)

Optimization terminated: maximum number of generations exceeded.

X =
-1.4098 -0.1216 11.6664

fval =
-138.1066

For this problem patternsearch computes the solution far more quickly and accurately.

See Also

More About

. “Write Constraints”
. “Vectorize the Objective and Constraint Functions” on page 5-77
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Set and Change Options

For all Global Optimization Toolbox solvers except GlobalSearch and MultiStart, the
recommended way to set options is to use the optimoptions function. Set GlobalSearch and
MultiStart options using their name-value pairs; see “Changing Global Options” on page 4-52.

For example, to set the ga maximum time to 300 seconds and set iterative display:
options = optimoptions('ga', 'MaxTime',300, 'Display', 'iter"');
Change options as follows:
* Dot notation. For example,
options.MaxTime = 5e3;
* optimoptions. For example,
options = optimoptions(options, 'MaxTime',b5e3);
Ensure that you pass options in your solver call. For example,

[x,fval] = ga(@objfun,2,[1,[1,[]1,[1,lb,ub,@onlcon,options);

To see the options you can change, consult the solver function reference pages. For option details, see
the options reference sections.

See Also

patternsearch | particleswarm | ga | simulannealbnd | surrogateopt | paretosearch |
gamultiobj

More About

. “Genetic Algorithm Options” on page 15-23

. “Particle Swarm Options” on page 15-44

. “Pattern Search Options” on page 15-7

. “Simulated Annealing Options” on page 15-57

. “Surrogate Optimization Options” on page 15-50
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View Options

optimoptions “hides” some options, meaning it does not display their values. For example, it hides

the patternsearch MaxMeshSize option.

options

options
patternsearch options:

Set properties:
No options set.

Default properties:

AccelerateMesh:
ConstraintTolerance:
Display:
FunctionTolerance:
InitialMeshSize:
MaxFunctionEvaluations:
MaxIterations:
MaxTime:
MeshContractionFactor:
MeshExpansionFactor:
MeshTolerance:
OutputFcn:

PlotFcn:

PollMethod:
PollOrderAlgorithm:
ScaleMesh:
SearchFcn:
StepTolerance:
UseCompletePoll:
UseCompleteSearch:
UseParallel:
UseVectorized:

You can view the value of any option, including “hidden” options, by using dot notation. For example,

options.MaxMeshSize
ans =

100

optimoptions('patternsearch', '"MaxMeshSize', le2)

0

1.0000e-06

'final'

1.0000e-06

1
'2000*numberOfVariables'
'100*number0fVariables'
Inf

0.5000

2

1.0000e-06

[]

[]
'GPSPositiveBasis2N'
'consecutive'

1

[]

1.0000e-06

[cNoNoNO]

Solver reference pages list “hidden” options in italics.

There are two reason that some options are “hidden”:

* They are not useful. For example, the ga StallTest option allows you to choose a stall test that

does not work well. Therefore, this option is “hidden”.

» They are rarely used, or it is hard to know when to use them. For example, the patternsearch

MaxMeshSize option is hard to choose, and so is “hidden”.

For details, see “Options that optimoptions Hides” on page 15-64.
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See Also

More About
. “Set and Change Options” on page 2-9

2-11






Problem-Based Global Optimization

* “Decide Between Problem-Based and Solver-Based Approach” on page 3-2
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Decide Between Problem-Based and Solver-Based Approach

3-2

Use a Global Optimization Toolbox solver to optimize a nonsmooth function, search for a global
solution, or solve a multiobjective problem. Use the problem-based approach for a simpler way to set
up and solve problems.

The problem-based approach has these general advantages:

Easier to set up and debug. In the problem-based approach, you use symbolic-style variables to
create optimization expressions and constraints. In the solver-based approach, you must place all
variables into a single vector, which can be awkward, especially with variables of large or differing
dimensions.

Easier to run different solvers on the same problem. Some solvers have different calling
syntaxes. For example, the syntax for nonlinear constraints in surrogateopt is different from the
syntax in all other solvers. To run a problem using both surrogateopt and another solver in the
solver-based approach, you have to create different versions of the objective function. In contrast,
the problem-based approach takes care of translating syntaxes, so you need to change only the
solver name and possibly some options.

Able to obtain an appropriate solver automatically. The solve function automatically
chooses a solver that can handle your objective and constraints. In the solver-based approach you
must choose an appropriate solver.

Able to automatically speed the solution of problems where the objective and nonlinear
constraints are calculated in the same time-consuming function (typically simulations).
Frequently, a simulation or ODE solver calculates the objective and nonlinear constraints in the
same function. When you convert the time-consuming function to an optimization expression using
fcn2optimexpr, you can save solution time by setting the 'ReuseEvaluation' argument to
true. This setting causes the solver to avoid recalculating the time-consuming function when
evaluating the objective and nonlinear constraints. Achieving this time savings in the solver-based
approach can require extra programming, as shown in the example “Objective and Nonlinear
Constraints in the Same Function”.

The problem-based approach has these limitations when used with Global Optimization Toolbox
solvers:

No equation problems. You cannot use a Global Optimization Toolbox solver to solve an equation
problem of type EquationProblem. However, you can solve a feasibility problem by specifying a
zero objective function and any constraints accepted by the solver. For an example, see “Solve
Feasibility Problem Using surrogateopt, Problem-Based” on page 11-6.

No GlobalSearch or MultiStart. Currently, to use these solvers you must use the solver-based
approach.

No multiobjective problems. To solve multiobjective problems using gamultiobj or
paretosearch, use the solver-based approach.

No custom data types. To use a custom data type with ga or simulannealbnd, you must use the
solver-based approach. For examples, see “Custom Data Type Optimization Using the Genetic
Algorithm” on page 7-104 and “Multiprocessor Scheduling Using Simulated Annealing with a
Custom Data Type” on page 12-26.

No checkpoint file for surrogateopt. Use the solver-based approach for checkpoint files in
surrogateopt. For details, see “Work with Checkpoint Files” on page 10-56.

No vectorization (see “Using Vectorization”). If your objective function and any nonlinear
constraint functions are written in a vectorized fashion, you must use the solver-based workflow to
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gain the benefits of vectorization. If you set the UseVectorized option in the problem-based
approach, you get a warning, not improved performance.

No initial point or population for ga, particleswarm, or surrogateopt. See “Initial Points for
Global Optimization Toolbox Solvers” on page 3-6.

You must convert variables for options that relate to the solver-based approach. For example,
custom output functions use solver-based syntax. Use varindex to convert problem-based
variables to solver-based indices. For an example, see “Set Options in Problem-Based Approach
Using varindex” on page 8-17.

No visual interface. The Optimize Live Editor task currently applies only to the solver-based
approach.

See Also

Related Examples

“Problem-Based Optimization Setup”

“Compare Several Global Solvers, Problem-Based” on page 1-3
“Direct Search”

“Genetic Algorithm”

“Surrogate Optimization”
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Global Optimization Toolbox Default Solvers and Problem
Types

This topic identifies the types of problems handled by Global Optimization Toolbox solvers, and the
default solver selected by solve or prob2struct for each type.

Problem Type Default Solver

Linear Programming (LP) linprog
Mixed-Integer Linear Programming (MILP) intlinprog
Quadratic Programming (QP) guadprog
Second-Order Cone Programming (SOCP) coneprog
Linear Least Squares lsqlin
Nonlinear Least Squares lsgnonlin

Nonlinear Programming (NLP) fminunc for problems with no constraints,

otherwise fmincon

Mixed-Integer Nonlinear Programming (MINLP) |ga

Note The call optimoptions(prob) creates options for the default solver of the problem type of
prob.

In this table, a check mark v" means the solver is available for the problem type, and an x means the
solver is not available.

3-4

Problem |LP MILP QP SOCP Linear Nonlinea |[NLP MINLP
Type Least r Least

Squares |Squares
Solver
linprog |y X X X X X X X
intlinp | N X X X X X X
rog
quadpro |y X v v v X X X
g
conepro |y X X v X X X X
g
lsqlin |[x X X X e X X X
lsgnonn (x X X X v X X X
€g
lsgnonl |x X X X v v X X
in
fminunc |/ b v X v v v X
fmincon |/ X v v v v X




Global Optimization Toolbox Default Solvers and Problem Types

Problem
Type

MILP

SOCP

Linear
Least
Squares

Nonlinea
r Least
Squares

NLP

MINLP

pattern
search

/

7

ga

particl
eswarm

simulan
nealbnd

surroga
teopt

NONON NN

NONON NN

NONONS

SNONONTS

NONON NN

See Also

prob2struct | solve | optimoptions

Related Examples

. “Problem-Based Optimization Setup”
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Initial Points for Global Optimization Toolbox Solvers
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Some Global Optimization Toolbox solvers require an initial point x0. When solving optimization
problems using the problem-based approach, you specify x0 in the second argument for solve and
for prob2struct. To specify an initial point, create a structure with the variable names as fields and
variable values as structure values. For example, for a scalar variable x and a 2-by-2 matrix y for the
patternsearch solver, enter the following code.

X0.x = 5;
x0.y = eye(2) + 0.1*randn(2);
[sol,fval] = solve(prob,x0,"Solver","patternsearch")

Note When using the problem-based approach with ga, particleswarm, or surrogateopt, you
cannot specify an initial point or population. Instead, convert your problem using prob2struct and
then pass the initial point or population in the associated option:

* InitialPopulationMatrix for ga
o InitialSwarmMatrix for particleswarm
* InitialPoints for surrogateopt

For example, take a 2-D variable x and a 2-by-2 matrix y for the ga solver.

X optimvar('x',2,"LowerBound", -1, "UpperBound",1);

y optimvar('y',2,2,"LowerBound", -1, "UpperBound",1);

prob = optimproblem("Objective", ...
cosh(dot(y*x,[2;-1]1)) - sinh(dot(y*x,[1;-2])));

prob.Constraints = y(1,2) == y(2,1);

problem = prob2struct(prob,"Solver","ga");

[}

% Obtain indices of problem variables
idx = varindex(prob)

idx =
struct with fields:

x: [1 2]
y: [3 45 6]

% Set initial population: x0x for x, xQy for y
rng default

x0x = [1;1/2];

x0y = eye(2)/2 + 0.1*randn(2);

pop = zeros(1l,max([idx.x,idx.y])); % Allocate population
pop(idx.x) = x0x(:)"'; % Convert to row vector

pop(idx.y) = x0y(:)"';

% Place in options
problem.options.InitialPopulationMatrix = pop;
% Solve problem

[sol,fval] = ga(problem)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

sol =
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1.0000 -1.0000 0.3080 -1.0000 -0.9990 1.0000

fval =

-50.4209

The solution satisfies the constraint y(1,2) == y(2,1) only to the constraint tolerance le-3:
sol(4) = -1.0000, butsol(5) = -0.9990.

See Also
prob2struct | solve

Related Examples

. “Problem-Based Optimization Setup”
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Integer Constraints in Nonlinear Problem-Based Optimization

3-8

To solve a nonlinear optimization problem with integer constraints using the problem-based
approach, follow one of these processes:

» Use a Global Optimization Toolbox solver that handles integer constraints, ga or surrogateopt.

* Convert the problem to a structure using prob2struct, and then use an external solver.

* Sometimes, you can iteratively approximate a nonlinear integer problem using intlinprog. For
an example of this approach, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based”.

The default solver for nonlinear problems with integer constraints is ga. You must have a Global
Optimization Toolbox license for the solve function to solve the problem using either ga or
surrogateopt.

When you use an external solver and call prob2struct, you might need to specify the Solver name-
value argument.

Note For a nonlinear problem with integer constraints, if you do not have a Global Optimization
Toolbox license, you must include the Solver argument.

Even if you have a Global Optimization Toolbox license, you still might need to specify the Solver
name-value argument. An external solver can expect the problem structure to be in a form that
corresponds to a particular solver. For example, for a problem with linear and integer constraints and
a quadratic objective function, an external solver might require the objective function to be expressed
as matrices H and fin the expression Y2x"Hx + fTx. To obtain these matrices, specify the 'quadprog'
solver by using the Solver name-value argument.

problem = prob2struct(prob,"Solver","quadprog");

If you do not specify the quadprog solver, the resulting problem structure can contain a function
handle for the objective function rather than matrices. In either case, the resulting problem structure
contains the integer variables in the intcon field.

Note For a nonlinear problem with integer constraints, when you specify a solver that does not
handle integer constraints, prob2struct issues a warning that the solver cannot solve the resulting
structure. If you then try to solve the problem by calling the solver on the problem structure, the
solver ignores the integer constraints. In this case, the solution is not the solution to the original
problem, but is instead the solution to the problem without integer constraints.

See Also
prob2struct | solve
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Problems That GlobalSearch and MultiStart Can Solve
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The GlobalSearch and MultiStart solvers apply to problems with smooth objective and constraint
functions. The solvers search for a global minimum, or for a set of local minima. For more information
on which solver to use, see “Table for Choosing a Solver” on page 1-30.

GlobalSearch and MultiStart work by starting a local solver, such as fmincon, from a variety of
start points. Generally the start points are random. However, for MultiStart you can provide a set
of start points. For more information, see “How GlobalSearch and MultiStart Work” on page 4-34.

To find out how to use these solvers, see “Workflow for GlobalSearch and MultiStart” on page 4-3.



Workflow for GlobalSearch and MultiStart

Workflow for GlobalSearch and MultiStart

To find a global or multiple local solutions for a smooth problem:

1  “Create Problem Structure” on page 4-4

2 “Create Solver Object” on page 4-7

3 (Optional, MultiStart only) “Set Start Points for MultiStart” on page 4-10
4  “Run the Solver” on page 4-13

The following figure illustrates these steps.

Local Snlverl X0] Optional,

MultiStart only

Start Points

Information

you have [Objective| [Constraints | Global options
Local Options

GlobalSearch i

Command createOptimProblem = HandamStaﬂrrtPalntSet
te use MultiStart CustomStartPointSet

Resulting
Object or |Pr{]blem Structure Solver Object |Start Points Object|
Structure

run

See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Create Problem Structure

4-4

In this section...

“About Problem Structures” on page 4-4
“Use the createOptimProblem Function” on page 4-4
“Example: Create a Problem Structure with createOptimProblem” on page 4-5

About Problem Structures

To use the GlobalSearch or MultiStart solvers, you must first create a problem structure. The
recommended way to create a problem structure is using the createOptimProblem function on
page 4-4. You can create a structure manually, but doing so is error-prone.

Use the createOptimProblem Function

Follow these steps to create a problem structure using the createOptimProblem function.

1

Define your objective function as a file or anonymous function. For details, see “Compute
Objective Functions” on page 2-2. If your solver is Llsqcurvefit or Lsqnonlin, ensure the
objective function returns a vector, not scalar.

If relevant, create your constraints, such as bounds and nonlinear constraint functions. For
details, see “Write Constraints” on page 2-6.

Create a start point. For example, to create a three-dimensional random start point xstart:
xstart = randn(3,1);
(Optional) Create options using optimoptions. For example,

options = optimoptions(@fmincon, 'Algorithm', 'interior-point"');
Enter

problem = createOptimProblem(solver,
where solver is the name of your local solver:

* For GlobalSearch: 'fmincon'
 For MultiStart the choices are:

e« 'fmincon'

« 'fminunc'

+ 'lsqcurvefit'
* 'lsgnonlin'

For help choosing, see “Optimization Decision Table”.
Set an initial point using the 'x0' parameter. If your initial point is xstart, and your solver is
fmincon, your entry is now
problem = createOptimProblem('fmincon', 'x0',xstart,
Include the function handle for your objective function in objective:




Create Problem Structure

problem = createOptimProblem('fmincon', 'x0',xstart,
'objective',@objfun,

8 Set bounds and other constraints as applicable.

Constraint Name
lower bounds "lb!
upper bounds 'ub!
matrix Aineq for linear inequalities Aineq X < bineq 'Aineq'
vector bineq for linear inequalities Aineq x < bineq 'bineq’
matrix Aeq for linear equalities Aeq x = beq 'Aeq’
vector beq for linear equalities Aeq x = beq 'beq’
nonlinear constraint function ‘nonlcon'

9 Ifusing the lsqcurvefit local solver, include vectors of input data and response data, named
'xdata' and 'ydata' respectively.

10 Best practice: validate the problem structure by running your solver on the structure. For
example, if your local solver is fmincon:

[x,fval,eflag,output] = fmincon(problem);

Example: Create a Problem Structure with createOptimProblem

This example minimizes the function from “Run the Solver” on page 4-13, subject to the constraint
X1 + 2x, = 4. The objective is

sixmin = 4x2 - 2.1x* + x8/3 + xy - 4y? + 4y~ (4-1)
Use the interior-point algorithm of fmincon, and set the start point to [2;3].

1 Write a function handle for the objective function.

sixmin = @(x) (4*x(1)"2 - 2.1*x(1)"4 + x(1)76/3 ...
+ X(1)*x(2) - 4*x(2)72 + 4*x(2)"4);
2 Write the linear constraint matrices. Change the constraint to “less than” form:

A=1[-1,-2];
b =-4;
3 Create the local options to use the interior-point algorithm:

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point');
4 Create the problem structure with createOptimProblem:
problem = createOptimProblem('fmincon',
'x0',[2;3], 'objective',sixmin,
'Aineq',A, 'bineq',b, 'options',opts)
5 The resulting structure:

problem =
struct with fields:

objective: @(x) (4*x(1)"2-2.1*x(1)"4+x(1)"6/3+x(1)*x(2)-4*x(2)"2+4*x(2)"4)
x0: [2x1 double]
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Aineq: [-1 -2]
bineq: -
Aeq: [
beq: [
1b: [
ub: [
nonlcon: []
solver: 'fmincon'
options: [1x1 optim.options.Fmincon]

6 Best practice: validate the problem structure by running your solver on the structure:

]
]
]
]

[x,fval,eflag,output] = fmincon(problem);

See Also

Related Examples
. “Workflow for GlobalSearch and MultiStart” on page 4-3
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Create Solver Object

In this section...
“What Is a Solver Object?” on page 4-7
“Properties (Global Options) of Solver Objects” on page 4-7

“Creating a Nondefault GlobalSearch Object” on page 4-8
“Creating a Nondefault MultiStart Object” on page 4-9

What Is a Solver Object?

A solver object contains your preferences for the global portion of the optimization.

You do not need to set any preferences. Create a GLobalSearch object named gs with default
settings as follows:

gs = GlobalSearch;

Similarly, create a MultiStart object named ms with default settings as follows:

ms = MultiStart;

Properties (Global Options) of Solver Objects

Global options are properties of a GlobalSearch or MultiStart object.
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Properties for both GlobalSearch and MultiStart

Property Name

Meaning

Display

Detail level of iterative display. Set to 'off' for no display, ' final'
(default) for a report at the end of the run, or 'iter' for reports as the
solver progresses. For more information and examples, see “Iterative
Display” on page 4-21.

FunctionTolerance

Solvers consider objective function values within FunctionTolerance
of each other to be identical (not distinct). Default: 1e-6. Solvers group
solutions when the solutions satisfy both FunctionTolerance and
XTolerance tolerances.

XTolerance

Solvers consider solutions within XTolerance distance of each other to
be identical (not distinct). Default: 1e-6. Solvers group solutions when
the solutions satisfy both FunctionTolerance and XTolerance
tolerances.

MaxTime

Solvers halt if the run exceeds MaxTime seconds, as measured by a clock
(not processor seconds). Default: Inf

StartPointsToRun

Choose whether to run 'all' (default) start points, only those points
that satisfy 'bounds’, or only those points that are feasible with respect
to bounds and inequality constraints with 'bounds-ineqs’. For an
example, see “Optimize Using Only Feasible Start Points” on page 4-75.

OutputFcn

Functions to run after each local solver run. See “Output Functions for
GlobalSearch and MultiStart” on page 4-27. Default: []

PlotFcn

Plot functions to run after each local solver run. See “Plot Functions for
GlobalSearch and MultiStart” on page 4-30. Default: [ ]

Properties for GlobalSearch

Property Name

Meaning

NumTrialPoints

Number of trial points to examine. Default: 1000

BasinRadiusFactor

See GlobalSearch Properties for detailed descriptions

DistanceThresholdFactor

of these properties.

MaxWaitCycle

NumStageOnePoints

PenaltyThresholdFactor

Properties for MultiStart

Property Name

Meaning

UseParallel

When true, MultiStart attempts to distribute start points to multiple
processors for the local solver. Disable by setting to false (default). For
details, see “How to Use Parallel Processing in Global Optimization
Toolbox” on page 14-11. For an example, see “Parallel MultiStart” on
page 4-82.

Creating a Nondefault GlobalSearch Object

Suppose you want to solve a problem and:
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* Consider local solutions identical if they are within 0.01 of each other and the function values are
within the default FunctionTolerance tolerance.

* Spend no more than 2000 seconds on the computation.

To solve the problem, create a GlobalSearch object gs as follows:

gs = GlobalSearch('XTolerance',0.01, 'MaxTime',2000);

Creating a Nondefault MultiStart Object

Suppose you want to solve a problem such that:

* You consider local solutions identical if they are within 0.01 of each other and the function values
are within the default FunctionTolerance tolerance.

* You spend no more than 2000 seconds on the computation.

To solve the problem, create a MultiStart object ms as follows:

ms = MultiStart('XTolerance',0.01, 'MaxTime',2000);
See Also

Related Examples
. “Workflow for GlobalSearch and MultiStart” on page 4-3
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Set Start Points for MultiStart

In this section...

“Four Ways to Set Start Points” on page 4-10

“Positive Integer for Start Points” on page 4-10
“RandomStartPointSet Object for Start Points” on page 4-10
“CustomStartPointSet Object for Start Points” on page 4-11
“Cell Array of Objects for Start Points” on page 4-12

Four Ways to Set Start Points
There are four ways you tell MultiStart which start points to use for the local solver:

» Pass a positive integer on page 4-10 k. MultiStart generates k - 1 start points as if using a
RandomStartPointSet object and the problem structure. MultiStart also uses the x0 start
point from the problem structure, for a total of k start points.

* Pass a RandomStartPointSet object on page 4-10.
* Pass a CustomStartPointSet object on page 4-11.

* Pass a cell array on page 4-12 of RandomStartPointSet and CustomStartPointSet objects.
Pass a cell array if you have some specific points you want to run, but also want MultiStart to
use other random start points.

Note You can control whether MultiStart uses all start points, or only those points that satisfy
bounds or other inequality constraints. For more information, see “Filter Start Points (Optional)” on
page 4-39.

Positive Integer for Start Points

The syntax for running MultiStart for k start points is
[xmin, fmin, flag,outpt,allmins] = run(ms,problem,k);

The positive integer k specifies the number of start points MultiStart uses. MultiStart generates
random start points using the dimension of the problem and bounds from the problem structure.
MultiStart generates k - 1 random start points, and also uses the x0 start point from the
problem structure.

RandomStartPointSet Object for Start Points

Create a RandomStartPointSet object as follows:

stpoints = RandomStartPointSet;

Run MultiStart starting from a RandomStartPointSet as follows:
[xmin, fmin, flag,outpt,allmins] = run(ms,problem,stpoints);

By default a RandomStartPointSet object generates 10 start points. Control the number of start
points with the NumStartPoints property. For example, to generate 40 start points:
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stpoints = RandomStartPointSet('NumStartPoints',b40);

You can set an ArtificialBound for a RandomStartPointSet. This ArtificialBound works in
conjunction with the bounds from the problem structure:

» If a component has no bounds, RandomStartPointSet uses a lower bound of -
ArtificialBound, and an upper bound of ArtificialBound.

» If a component has a lower bound 1b but no upper bound, RandomStartPointSet uses an upper
bound of b + 2*ArtificialBound.

* Similarly, if a component has an upper bound ub but no lower bound, RandomStartPointSet
uses a lower bound of ub - 2*ArtificialBound.

For example, to generate 100 start points with an ArtificialBound of 50:

stpoints = RandomStartPointSet('NumStartPoints', 100,
"ArtificialBound',50);

A RandomStartPointSet object generates start points with the same dimension as the x0 point in
the problem structure; see list.

CustomStartPointSet Object for Start Points

To use a specific set of starting points, package them in a CustomStartPointSet as follows:

1 Place the starting points in a matrix. Each row of the matrix represents one starting point.
MultiStart runs all the rows of the matrix, subject to filtering with the StartPointsToRun
property. For more information, see “MultiStart Algorithm” on page 4-38.

2 Create a CustomStartPointSet object from the matrix:

tpoints = CustomStartPointSet(ptmatrix);

For example, create a set of 40 five-dimensional points, with each component of a point equal to 10
plus an exponentially distributed variable with mean 25:

pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);

Run MultiStart starting from a CustomStartPointSet as follows:

[xmin, fmin, flag,outpt,allmins] = run(ms,problem, tpoints);

To get the original matrix of points from a CustomStartPointSet object, use list:
pts = list(tpoints); % Assumes tpoints is a CustomStartPointSet

A CustomStartPointSet has two properties: StartPointsDimension and NumStartPoints. You
can use these properties to query a CustomStartPointSet object. For example, the tpoints
object in the example has the following properties:

tpoints.StartPointsDimension
ans =
5

tpoints.NumStartPoints

ans =
40
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Cell Array of Objects for Start Points

To use a specific set of starting points along with some randomly generated points, pass a cell array
of RandomStartPointSet or CustomStartPointSet objects.

For example, to use both the 40 specific five-dimensional points of “CustomStartPointSet Object for
Start Points” on page 4-11 and 40 additional five-dimensional points from RandomStartPointSet:

pts = -25*log(rand(40,5)) + 10;
tpoints = CustomStartPointSet(pts);

rpts = RandomStartPointSet('NumStartPoints',40);
allpts = {tpoints, rpts};

Run MultiStart starting from the allpts cell array:

% Assume ms and problem exist
[xmin, fmin, flag,outpt,allmins] = run(ms,problem,allpts);

See Also

Related Examples
. “Workflow for GlobalSearch and MultiStart” on page 4-3
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Run the Solver

In this section...

“Optimize by Calling run” on page 4-13
“Example of Run with GlobalSearch” on page 4-13
“Example of Run with MultiStart” on page 4-14

Optimize by Calling run

Running a solver is nearly identical for GLobalSearch and MultiStart. The only difference in
syntax is MultiStart takes an additional input describing the start points.

For example, suppose you want to find several local minima of the sixmin function
sixmin = 4x2 - 2.1x* + x5/3 + xy - 4y? + 4y~

sixminix,y)
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This function is also called the six-hump camel back function [3]. All the local minima lie in the region
-3=xy=3.

Example of Run with GlobalSearch

To find several local minima of the sixmin function using GlobalSearch, enter:
% % Set the random stream to get exactly the same output
ng(1l4, 'twister')
gs = GlobalSearch;
opts = optimoptions(@fmincon, 'Algorithm', 'interior-point');
sixmin = @(x) (4*x(1)"2 - 2.1*x(1)"4 + x(1)"6/3 ...
+ x(1)*x(2) - 4*x(2)72 + 4*x(2)"4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...

°
i)
r

)
“©
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'options',opts);
[xming, fming, flagg,outptg,manyminsg] = run(gs,problem);

The output of the run (which varies, based on the random seed):

xming, fming, flagg,outptg,manyminsg
xming =
0.0898 -0.7127

fming =
-1.0316

flagg =
1

outptg =
struct with fields:

funcCount: 2115
localSolverTotal: 3
localSolverSuccess: 3
localSolverIncomplete: 0
localSolverNoSolution: 0

message: 'GlobalSearch stopped because it analyzed all the trial po...'

manyminsg =
1x2 GlobalOptimSolution array with properties:

X

Fval
Exitflag
Output
X0

Example of Run with MultiStart

To find several local minima of the sixmin function using 50 runs of fmincon with MultiStart,

enter:

% % Set the random stream to get exactly the same output

% rng(14, 'twister"')

ms = MultiStart;

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point');

sixmin = @(x) (4*x(1)"2 - 2.1*x(1)"4 + x(1)"6/3 ...
+ X(1)*x(2) - 4*x(2)"2 + 4*x(2)"4);

problem = createOptimProblem('fmincon', 'x0',[-1,2],...
'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
'options',opts);

[xminm, fminm, flagm,outptm,manyminsm] = run(ms,problem,b50);

[
“©
r

The output of the run (which varies based on the random seed):
xminm, fminm, flagm,outptm,manyminsm

xminm =
0.0898 -0.7127
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fminm =
-1.0316

flagm =
1

outptm =
struct with fields:

funcCount: 2034
localSolverTotal: 50
localSolverSuccess: 50
localSolverIncomplete: 0
localSolverNoSolution: 0
message: 'MultiStart completed the runs from all start points...'

manyminsm =
1x6 GlobalOptimSolution array with properties:

X

Fval
Exitflag
Output
X0

In this case, MultiStart located all six local minima, while GlobalSearch located two. For pictures
of the MultiStart solutions, see “Visualize the Basins of Attraction” on page 4-24.

See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Single Solution

You obtain the single best solution found during the run by calling run with the syntax
[x,fval,eflag,output] = run(...);

* X is the location of the local minimum with smallest objective function value.
» fval is the objective function value evaluated at x.
+ eflagis an exit flag for the global solver. Values:

Global Solver Exit Flags

2 At least one local minimum found. Some runs of the local solver converged (had
positive exit flag).

1 At least one local minimum found. All runs of the local solver converged (had
positive exit flag).

0 No local minimum found. Local solver called at least once, and at least one local
solver exceeded the MaxIterations or MaxFunctionEvaluations tolerances.

-1 Solver stopped by output function or plot function.

-2 No feasible local minimum found.

-5 MaxTime limit exceeded.

-8 No solution found. All runs had local solver exit flag -1 or smaller.

-10 Failures encountered in user-provided functions.

* output is a structure with details about the multiple runs of the local solver. For more
information, see “Global Output Structures” on page 4-23.

The list of outputs is for the case eflag > 0.If eflag <= 0, then x is the following:

+ If some local solutions are feasible, x represents the location of the lowest objective function
value. “Feasible” means the constraint violations are smaller than
problem.options.ConstraintTolerance.

* If no solutions are feasible, x is the solution with lowest infeasibility.
* If no solutions exist, x, fval, and output are empty entries ([ ]).

See Also

Related Examples
. “Run the Solver” on page 4-13
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Multiple Solutions

In this section...
“About Multiple Solutions” on page 4-17
“Change the Definition of Distinct Solutions” on page 4-19

About Multiple Solutions

You obtain multiple solutions in an object by calling run with the syntax
[x,fval,eflag,output,manymins] = run(...);

manymins is a vector of solution objects; see GlobalOptimSolution. The manymins vector is in
order of objective function value, from lowest (best) to highest (worst). Each solution object contains
the following properties (fields):

* X — alocal minimum
* Fval — the value of the objective function at X

* Exitflag — the exit flag for the local solver (described in the local solver function reference
page: fmincon exitflag, fminunc exitflag, lsqcurvefit exitflag , or Lsgnonlin
exitflag

* Qutput — an output structure for the local solver (described in the local solver function reference
page: fmincon output, fminunc output, lsqcurvefit output , or Isgnonlin output

* X0 — a cell array of start points that led to the solution point X

There are several ways to examine the vector of solution objects:

* In the MATLAB Workspace Browser. Double-click the solution object, and then double-click the
resulting display in the Variables editor.

Mame Value Mi
be| ans ‘ffmathworks/devel/j...

1 flag 1 1
- frmin -1.0316 1.0
Clfmanymins | <155 GlobalOptimSol..
E¥ms <10 MultiStart>

opts <11 struct=

outpt =11 struct=

problem =1 struct=

@] zixrnin o)A 1) 2-21%d(1...

- xmin [0.0898,-0.7127] 0.3
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& Variables - manymins

manymins

manymins <1x5 GlobalOptimSolution =

1 2 3

1 |<1x GI:::I;:IaI<1x1 Global... <1:1 Global... |«

g4 Variables - manymins(l, 1)

mManyrmnins X[man],rminsl[l,lj ><]

manymins(l, 13 «1:1 GlobalOptimSelution:>

Value Min hax
[0.0898, -0.7127] -0.7127 0.0898
-1.0316 10316 -1.0316
1 1 1

<lxl struct=

<1:19 cell>

Using dot notation. GlobalOptimSolution properties are capitalized. Use proper capitalization
to access the properties.

For example, to find the vector of function values, enter:

fcnvals = [manymins.Fvall
fcnvals =
-1.0316 -0.2155 0

To get a cell array of all the start points that led to the lowest function value (the first element of
manymins), enter:

smallX® = manymins(1).X0
Plot some field values. For example, to see the range of resulting Fval, enter:

histogram([manymins.Fval],10)

This results in a histogram of the computed function values. (The figure shows a histogram from a
different example than the previous few figures.)
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Change the Definition of Distinct Solutions

You might find out, after obtaining multiple local solutions, that your tolerances were not appropriate.
You can have many more local solutions than you want, spaced too closely together. Or you can have
fewer solutions than you want, with GlobalSearch or MultiStart clumping together too many
solutions.

To deal with this situation, run the solver again with different tolerances. The XTolerance and
FunctionTolerance tolerances determine how the solvers group their outputs into the
GlobalOptimSolution vector. These tolerances are properties of the GlobalSearch or
MultiStart object.

For example, suppose you want to use the active-set algorithm in fmincon to solve the problem in
“Example of Run with MultiStart” on page 4-14. Further suppose that you want to have tolerances of

0.01 for both XTolerance and FunctionTolerance. The run method groups local solutions whose
objective function values are within FunctionTolerance of each other, and which are also less than
XTolerance apart from each other. To obtain the solution:

% % Set the random stream to get exactly the same output
rng (14, 'twister"')
ms = MultiStart('FunctionTolerance',0.01, 'XTolerance',0.01);
opts = optimoptions(@fmincon, 'Algorithm', 'active-set');
sixmin = @(x) (4*x(1)"2 - 2.1*x(1)"4 + x(1)"6/3 ...

+ X(1)*x(2) - 4*x(2)"2 + 4*x(2)"4);
problem = createOptimProblem('fmincon','x0',[-1,2],...
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'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
'options',opts);
[xminm, fminm, flagm,outptm,someminsm] = run(ms,problem,50);
MultiStart completed the runs from all start points.

A1l 50 local solver runs converged with a
positive local solver exit flag.

someminsm
someminsm =
1x5 GlobalOptimSolution
Properties:
X
Fval
Exitflag
Output
X0
In this case, MultiStart generated five distinct solutions. Here “distinct” means that the solutions
are more than 0.01 apart in either objective function value or location.
See Also

Related Examples
. “Run the Solver” on page 4-13
. “Visualize the Basins of Attraction” on page 4-24
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Iterative Display

In this section...

“Types of Iterative Display” on page 4-21

“Examine Types of Iterative Display” on page 4-21

Types of Iterative Display
Iterative display gives you information about the progress of solvers during their runs.
There are two types of iterative display:

* Global solver display
* Local solver display

Both types appear at the command line, depending on global and local options.

Obtain local solver iterative display by setting the Display option in the problem.options field to
'iter' or 'iter-detailed' with optimoptions. For more information, see “Iterative Display”.

Obtain global solver iterative display by setting the Display property in the GlobalSearch or
MultiStart objectto 'iter"'.

Global solvers set the default Display option of the local solver to 'off', unless the problem
structure has a value for this option. Global solvers do not override any setting you make for local
options.

Note Setting the local solver Display option to anything other than 'off' can produce a great deal
of output. The default Display option created by optimoptions(@solver) is 'final'.

Examine Types of Iterative Display

Run the example described in “Run the Solver” on page 4-13 using GlobalSearch with
GlobalSearch iterative display:

% Set the random stream to get exactly the same output

rng(14, 'twister')

gs = GlobalSearch('Display', 'iter');

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point"');

sixmin = @(x) (4*x(1)"2 - 2.1*x(1)™4 + x(1)76/3 ...
+ X(1)*x(2) - 4*x(2)"2 + 4*x(2)"4);

problem = createOptimProblem('fmincon','x0"',[-1,2],...
‘objective',sixmin, 'lb',[-3,-3],'ub"',[3,3],...
‘options',opts);

[xming, fming, flagg,outptg,manyminsg] = run(gs,problem);

Num Pts Best Current Threshold Local Local

Analyzed F-count f(x) Penalty Penalty f(x) exitflag Procedure
0 34 -1.032 -1.032 1 Initial Point

200 1275 -1.032 -0.2155 1 Stage 1 Local

300 1377 -1.032 248.7 -0.2137 Stage 2 Search

400 1477 -1.032 278 1.134 Stage 2 Search

446 1561 -1.032 1.6 2.073 -0.2155 1 Stage 2 Local

500 1615 -1.032 9.055 0.3214 Stage 2 Search

600 1715 -1.032 -0.7299 -0.7686 Stage 2 Search

700 1815 -1.032 0.3191 -0.7431 Stage 2 Search

800 1915 -1.032 296.4 0.4577 Stage 2 Search

900 2015 -1.032 10.68 0.5116 Stage 2 Search
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1000 2115 -1.032 -0.9207 -0.9254 Stage 2 Search
GlobalSearch stopped because it analyzed all the trial points.

All 3 local solver runs converged with a positive local solver exit flag.

Run the same example without GlobalSearch iterative display, but with fmincon iterative display:

gs.Display = 'final';
problem.options.Display = 'iter';
[xming, fming, flagg,outptg,manyminsg] = run(gs,problem);

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 3 -1.980435e-02 0.000e+00 1.996e+00
1 9 -6.970985e-02 0.000e+00 3.140e+00 2.533e-01
2 13 -8.662720e-02 0.000e+00 2.775e+00 1.229%e-01
3 18 -1.176972e-01 0.000e+00 1.629e+00 1.811le-01
4 21 -2.132377e-01 0.000e+00 2.097e-01 8.636e-02
5 24 -2.153982e-01 0.000e+00 7.701e-02 1.504e-02
6 27 -2.154521e-01 0.000e+00 1.547e-02 1.734e-03
7 30 -2.154637e-01 0.000e+00 1.222e-03 1.039e-03
8 33 -2.154638e-01 0.000e+00 1.543e-04 8.413e-05
9 36 -2.154638e-01 0.000e+00 1.543e-06 6.610e-06
10 39 -2.154638e-01 0.000e+00 1.686e-07 7.751e-08

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints were satisfied to within the selected value of the constraint tolerance.

<stopping criteria details>

First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 3 -1.980435e-02 0.000e+00 1.996e+00
. MANY ITERATIONS DELETED ...
8 33  -1.031628e+00 0.000e+00 8.742e-07 2.287e-07

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints were satisfied to within the selected value of the constraint tolerance.
<stopping criteria details>

GlobalSearch stopped because it analyzed all the trial points.

All 4 local solver runs converged with a positive local solver exit flag.

Setting GlobalSearch iterative display, as well as fmincon iterative display, yields both displays
intermingled.

For an example of iterative display in a parallel environment, see “Parallel MultiStart” on page 4-82.

See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Global Output Structures

run can produce two types of output structures:

* A global output structure. This structure contains information about the overall run from multiple
starting points. Details follow.

* Local solver output structures. The vector of GLobalOptimSolution objects contains one such
structure in each element of the vector. For a description of this structure, see “Output
Structures”, or the function reference pages for the local solvers: fmincon output, fminunc
output, lsqcurvefit output , or Lsgnonlin output .

Global Output Structure

Field Meaning

funcCount Total number of calls to user-supplied functions (objective or nonlinear
constraint)

localSolverTotal Number of local solver runs started

localSolverSuccess Number of local solver runs that finished with a positive exit flag

localSolverIncomplete Number of local solver runs that finished with a 0 exit flag

localSolverNoSolution Number of local solver runs that finished with a negative exit flag

message GlobalSearch or MultiStart exit message

A positive exit flag from a local solver generally indicates a successful run. A negative exit flag
indicates a failure. A 0 exit flag indicates that the solver stopped by exceeding the iteration or
function evaluation limit. For more information, see “Exit Flags and Exit Messages” or “Tolerances
and Stopping Criteria”.

See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Visualize the Basins of Attraction
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Which start points lead to which basin? For a steepest descent solver, nearby points generally lead to
the same basin; see “Basins of Attraction” on page 1-26. However, for Optimization Toolbox solvers,
basins are more complicated.

Plot the MultiStart start points from the example, “Example of Run with MultiStart” on page 4-14,
color-coded with the basin where they end.

rng(14, 'twister')

Uncomment the previous line to get the same output

ms = MultiStart;

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point');
sixmin = @(x) (4*x(1)"2 - 2.1*x(1)"4 + x(1)"6/3 ...

+ X(1)*x(2) - 4*x(2)"2 + 4*x(2)"4);

problem = createOptimProblem('fmincon','x0"',[-1,2],...
'objective',sixmin,'lb',[-3,-3],'ub',[3,3],...
‘options',opts);

[xminm, fminm, flagm,outptm,manyminsm] = run(ms,problem,b50);

)
“
[)

“©

possColors = 'kbgcrm';
hold on
for i = 1l:size(manyminsm,2)

% Color of this line
cIdx = rem(i-1, length(possColors)) + 1;
color = possColors(cIdx);

% Plot start points

u = manyminsm(i).X0;

x0ThisMin = reshape([u{:}], 2, length(u));

plot(x0ThisMin(1, :), xO0ThisMin(2, :), '.'
'Color',color, 'MarkerSize',25);

’

% Plot the basin with color i
plot(manyminsm(i).X(1), manyminsm(i).X(2), '*',
'Color', color, 'MarkerSize',25);
end % basin center marked with a *, start points with dots
hold off



Visualize the Basins of Attraction
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The figure shows the centers of the basins by colored * symbols. Start points with the same color as
the * symbol converge to the center of the * symbol.

Start points do not always converge to the closest basin. For example, the red points are closer to the
cyan basin center than to the red basin center. Also, many black and blue start points are closer to
the opposite basin centers.

The magenta and red basins are shallow, as you can see in the following contour plot.
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sixmini[x,y])

See Also

Related Examples
. “Multiple Solutions” on page 4-17
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Output Functions for GlobalSearch and MultiStart

In this section...

“What Are Output Functions?” on page 4-27
“GlobalSearch Output Function” on page 4-27

“No Parallel Output Functions” on page 4-28

What Are Output Functions?

Output functions allow you to examine intermediate results in an optimization. Additionally, they
allow you to halt a solver programmatically.

There are two types of output functions, like the two types of output structures on page 4-23:

* Global output functions run after each local solver run. They also run when the global solver starts
and ends.

* Local output functions run after each iteration of a local solver. See “Output Functions for
Optimization Toolbox™".

To use global output functions:

* Write output functions using the syntax described in “OutputFcn” on page 15-3.

* Set the OutputFcn property of your GlobalSearch or MultiStart solver to the function handle
of your output function. You can use multiple output functions by setting the OutputFcn property
to a cell array of function handles.

GlobalSearch Output Function

This output function stops GlobalSearch after it finds five distinct local minima with positive exit
flags, or after it finds a local minimum value less than 0.5. The output function uses a persistent local
variable, foundLocal, to store the local results. foundLocal enables the output function to
determine whether a local solution is distinct from others, to within a tolerance of 1e-4.

To store local results using nested functions instead of persistent variables, see “Example of a Nested
Output Function”.

1 Write the output function using the syntax described in “OutputFcn” on page 15-3.

function stop = StopAfterFive(optimValues, state)
persistent foundLocal
stop = false;
switch state
case 'init'
foundLocal = []; % initialized as empty
case 'iter'
newf = optimValues.localsolution.Fval;
eflag = optimValues.localsolution.Exitflag;
% Now check if the exit flag is positive and
% the new value differs from all others by at least le-4
% If so, add the new value to the newf list
if eflag > 0 && all(abs(newf - foundLocal) > le-4)
foundLocal = [foundLocal;newf];
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Now check if the latest value added to foundLocal

is less than 1/2

Also check if there are 5 local minima in foundLocal

If so, then stop

if foundLocal(end) < 0.5 || length(foundLocal) >= 5
stop = true;

end

0° o° o° o°

end
end
Save StopAfterFive.m as a file in a folder on your MATLAB path.
Write the objective function and create an optimization problem structure as in “Find Global or
Multiple Local Minima” on page 4-57.

WN

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4)
Kr. 2./ (r+l);

f = g.*%h;

end

4 Save sawtoothxy.m as a file in a folder on your MATLAB path.
5 At the command line, create the problem structure:

problem = createOptimProblem('fmincon', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50], 'options’, ...
optimoptions(@fmincon, 'Algorithm', 'sqp'));
6 Create a GlobalSearch object with @StopAfterFive as the output function, and set the
iterative display property to 'iter’.

gs = GlobalSearch('OutputFcn',@StopAfterFive, 'Display', 'iter');
7 (Optional) To get the same answer as this example, set the default random number stream.

rng default
8 Run the problem.

[x,fvall = run(gs,problem)
Num Pts Best Current Threshold Local Local
Analyzed F-count f(x) Penalty Penalty f(x) exitflag Procedure
0 200 555.5 555.5 0 Initial Point
200 1463 1.547e-15 1.547e-15 1 Stage 1 Local

GlobalSearch stopped by the output or plot function.
1 out of 2 local solver runs converged with a positive local solver exit flag.
X =

1.0e-07 *

0.0414 0.1298

fval =

1.5467e-15

The run stopped early because GlobalSearch found a point with a function value less than 0.5.

No Parallel Output Functions

While MultiStart can run in parallel, it does not support global output functions and plot functions
in parallel. Furthermore, while local output functions and plot functions run on workers when
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MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions
do not create a display when running on workers. You do not see any other effects of output and plot

functions until the worker passes its results to the client (the originator of the MultiStart parallel
jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.

See Also

Related Examples
. “Global or Multiple Starting Point Search”
. “Plot Functions for GlobalSearch and MultiStart” on page 4-30
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In this section...

“What Are Plot Functions?” on page 4-30
“MultiStart Plot Function” on page 4-30
“No Parallel Plot Functions” on page 4-33

What Are Plot Functions?

The PlotFcn field of options specifies one or more functions that an optimization function calls at
each iteration. Plot functions plot various measures of progress while the algorithm executes. Pass a
function handle or cell array of function handles. The structure of a plot function is the same as the
structure of an output function. For more information on this structure, see “OutputFcn” on page 15-
3.

Plot functions are specialized output functions (see “Output Functions for GlobalSearch and
MultiStart” on page 4-27). There are two predefined plot functions:

* @gsplotbestf plots the best objective function value.

* @gsplotfunccount plots the number of function evaluations.

Plot function windows have Pause and Stop buttons. By default, all plots appear in one window.
To use global plot functions:

* Write plot functions using the syntax described in “OutputFcn” on page 15-3.

» Set the PlotFcn property of your GlobalSearch or MultiStart object to the function handle of
your plot function. You can use multiple plot functions by setting the PLotFcn property to a cell
array of function handles.

Details of Built-In Plot Functions
The built-in plot functions have characteristics that can surprise you.

* @gsplotbestf can have plots that are not strictly decreasing. This is because early values can
result from local solver runs with negative exit flags (such as infeasible solutions). A subsequent
local solution with positive exit flag is better even if its function value is higher. Once a local solver
returns a value with a positive exit flag, the plot is monotone decreasing.

* @gsplotfunccount might not plot the total number of function evaluations. This is because
GlobalSearch can continue to perform function evaluations after it calls the plot function for the
last time. For more information, see “GlobalSearch Algorithm” on page 4-35.

MultiStart Plot Function

This example plots the number of local solver runs it takes to obtain a better local minimum for
MultiStart. The example also uses a built-in plot function to show the current best function value.

The example problem is the same as in “Find Global or Multiple Local Minima” on page 4-57, with
additional bounds.
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The example uses persistent variables to store previous best values. The plot function examines the
best function value after each local solver run, available in the bestfval field of the optimValues
structure. If the value is not lower than the previous best, the plot function adds 1 to the number of
consecutive calls with no improvement and draws a bar chart. If the value is lower than the previous
best, the plot function starts a new bar in the chart with value 1. Before plotting, the plot function
takes a logarithm of the number of consecutive calls. The logarithm helps keep the plot legible, since
some values can be much larger than others.

To store local results using nested functions instead of persistent variables, see “Example of a Nested
Output Function”.

Plot Function Example

This example minimizes the sawtoothxy helper function, which is listed at the end of this example
on page 4-0 . In general, save your objective function in a file on your MATLAB® path.

The NumberToNextBest custom plot function is attached to this example. In general, save your plot
function in a file on your MATLAB path. Here is a listing.

type NumberToNextBest
function stop = NumberToNextBest(optimValues, state)
persistent bestfv bestcounter

stop = false;
switch state
case 'init'
% Initialize variable to record best function value.
bestfv = [];

Initialize counter to record number of
local solver runs to find next best minimum.
bestcounter = 1;

%
%

% Create the histogram.

bar(log(bestcounter), 'tag', 'NumberToNextBest');

xlabel('Number of New Best Fval Found');

ylabel('Log Number of Local Solver Runs');

title('Number of Local Solver Runs to Find Lower Minimum')
case 'iter'

% Find the axes containing the histogram.

NumToNext = ...

findobj (get(gca, 'Children'), 'Tag', 'NumberToNextBest');

% Update the counter that records number of local
% solver runs to find next best minimum.
if ~isequal(optimValues.bestfval, bestfv)
bestfv = optimValues.bestfval;
bestcounter = [bestcounter 1];
else
bestcounter(end) = bestcounter(end) + 1;
end

% Update the histogram.

set (NumToNext, 'Ydata', log(bestcounter))
end
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Create the problem structure and global solver object. Set lower bounds of [ -3e3, -4e3], upper
bounds of [4e3,3e3] and set the global solver to use the NumberToNextBest custom plot function
and the gsplotbestf built-in plot function.

problem = createOptimProblem('fmincon', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50],'lb"',[-3e3 -4e3],...
'ub', [4e3,3e3], 'options', ...
optimoptions(@fmincon, 'Algorithm', 'sqp'));
ms = MultiStart('PlotFcn',{@NumberToNextBest,@gsplotbestf});
Run the global solver for 100 local solver runs.

rng(2); % For reproducibility
[x,fv] = run(ms,problem,100);

Number of Local Solver Runs to Find Lower Minimum
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Local solver call

MultiStart completed some of the runs from the start points.

33 out of 100 local solver runs converged with a positive local solver exit flag.
Helper Functions

This code creates the sawtoothxy helper function.

function f = sawtoothxy(x,y)

[t,r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;
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g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
Kr.”2./(r+l);

f = g.*h;

end

No Parallel Plot Functions

While MultiStart can run in parallel, it does not support global output functions and plot functions
in parallel. Furthermore, while local output functions and plot functions run on workers when
MultiStart runs in parallel, the effect differs from running serially. Local output and plot functions
do not create a display when running on workers. You do not see any other effects of output and plot
functions until the worker passes its results to the client (the originator of the MultiStart parallel
jobs).

For information on running MultiStart in parallel, see “Parallel Computing”.
See Also

Related Examples
. “Global or Multiple Starting Point Search”
. “Output Functions for GlobalSearch and MultiStart” on page 4-27
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How GlobalSearch and MultiStart Work
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In this section...

“Multiple Runs of a Local Solver” on page 4-34
“Differences Between the Solver Objects” on page 4-34
“GlobalSearch Algorithm” on page 4-35

“MultiStart Algorithm” on page 4-38

“Bibliography” on page 4-40

Multiple Runs of a Local Solver

GlobalSearch and MultiStart have similar approaches to finding global or multiple minima. Both
algorithms start a local solver (such as fmincon) from multiple start points. The algorithms use
multiple start points to sample multiple basins of attraction. For more information, see “Basins of
Attraction” on page 1-26.

Differences Between the Solver Objects

“GlobalSearch and MultiStart Algorithm Overview” on page 4-34 contains a sketch of the
GlobalSearch and MultiStart algorithms.

GlobalSearch Algorithm MultiStart Algorithm
[Run tmincon from =0} [Generate start points|
Generate trial points :
(potential start points) Run start polnts

Shoe 1 [Create GlobalOptimSolutions vector]

Run best start pa?r?t a-mﬂng the first
MumStage OnePoints trial points

Y

Stage 2:
Loop through remaining trial points,
run fmincon if point satisfies
basin, score, and constraint filters

|Create GlobalOptimSolutions vector]|

GlobalSearch and MultiStart Algorithm Overview
The main differences between GlobalSearch and MultiStart are:

* GlobalSearch uses a scatter-search mechanism for generating start points. MultiStart uses
uniformly distributed start points within bounds, or user-supplied start points.

* GlobalSearch analyzes start points and rejects those points that are unlikely to improve the best
local minimum found so far. MultiStart runs all start points (or, optionally, all start points that
are feasible with respect to bounds or inequality constraints).
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* MultiStart gives a choice of local solver: fmincon, fminunc, lsqcurvefit, or Lsqnonlin.
The GlobalSearch algorithm uses fmincon.

* MultiStart can run in parallel, distributing start points to multiple processors for local solution.
To run MultiStart in parallel, see “How to Use Parallel Processing in Global Optimization
Toolbox” on page 14-11.

Deciding Which Solver to Use
The differences between these solver objects boil down to the following decision on which to use:

* Use GlobalSearch to find a single global minimum most efficiently on a single processor.
* UseMultiStart to:

* Find multiple local minima.

* Run in parallel.

* Use a solver other than fmincon.

* Search thoroughly for a global minimum.
* Explore your own start points.

GlobalSearch Algorithm

For a description of the algorithm, see Ugray et al. [1].
When you run a GlobalSearch object, the algorithm performs the following steps:

“Run fmincon from x0” on page 4-35

“Generate Trial Points” on page 4-35

“Obtain Stage 1 Start Point, Run” on page 4-36

“Initialize Basins, Counters, Threshold” on page 4-36

“Begin Main Loop” on page 4-36

“Examine Stage 2 Trial Point to See if fmincon Runs” on page 4-36
“When fmincon Runs” on page 4-37

“When fmincon Does Not Run” on page 4-37

“Create GlobalOptimSolution” on page 4-38

© P Ne U W

Run fmincon from x0

GlobalSearch runs fmincon from the start point you give in the problem structure. If this run
converges, GlobalSearch records the start point and end point for an initial estimate on the radius
of a basin of attraction. Furthermore, GlobalSearch records the final objective function value for
use in the score function (see “Obtain Stage 1 Start Point, Run” on page 4-36).

The score function is the sum of the objective function value at a point and a multiple of the sum of
the constraint violations. So a feasible point has score equal to its objective function value. The
multiple for constraint violations is initially 1000. GlobalSearch updates the multiple during the
run.

Generate Trial Points

GlobalSearch uses the scatter search algorithm to generate a set of NumTrialPoints trial points.
Trial points are potential start points. For a description of the scatter search algorithm, see Glover

4-35



4 Using GlobalSearch and MultiStart

4-36

[2]. GlobalSearch generates trial points within any finite bounds you set (1b and ub). Unbounded
components have artificial bounds imposed: lb = -1e4 + 1,ub = 1le4 + 1. This range is not
symmetric about the origin so that the origin is not in the scatter search. Components with one-sided
bounds have artificial bounds imposed on the unbounded side, shifted by the finite bounds to keep
b < ub.

Obtain Stage 1 Start Point, Run

GlobalSearch evaluates the score function of a set of NumStageOnePoints trial points. It then
takes the point with the best score and runs fmincon from that point. GLobalSearch removes the
set of NumStageOnePoints trial points from its list of points to examine.

Initialize Basins, Counters, Threshold

The localSolverThreshold is initially the smaller of the two objective function values at the
solution points. The solution points are the fmincon solutions starting from x0 and from the Stage 1
start point. If both of these solution points do not exist or are infeasible, localSolverThreshold is
initially the penalty function value of the Stage 1 start point.

The GlobalSearch heuristic assumption is that basins of attraction are spherical. The initial
estimate of basins of attraction for the solution point from x0 and the solution point from Stage 1 are
spheres centered at the solution points. The radius of each sphere is the distance from the initial
point to the solution point. These estimated basins can overlap.

There are two sets of counters associated with the algorithm. Each counter is the number of
consecutive trial points that:

» Lie within a basin of attraction. There is one counter for each basin.

* Have score function greater than localSolverThreshold. For a definition of the score, see
“Run fmincon from x0” on page 4-35.

All counters are initially 0.
Begin Main Loop

GlobalSearch repeatedly examines a remaining trial point from the list, and performs the following
steps. It continually monitors the time, and stops the search if elapsed time exceeds MaxTime
seconds.

Examine Stage 2 Trial Point to See if fmincon Runs
Call the trial point p. Run fmincon from p if the following conditions hold:
* pisnotin any existing basin. The criterion for every basin i is:
|p - center(i)| > DistanceThresholdFactor * radius(i).
DistanceThresholdFactor is an option (default value 0.75).

radius is an estimated radius that updates in Update Basin Radius and Threshold on page 4-37
and React to Large Counter Values on page 4-38.

» score(p) < localSolverThreshold.

* (optional) p satisfies bound and/or inequality constraints. This test occurs if you set the
StartPointsToRun property of the GlobalSearch object to 'bounds' or 'bounds-ineqs"'.
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When fmincon Runs

1

Reset Counters

Set the counters for basins and threshold to 0.
Update Solution Set

If fmincon runs starting from p, it can yield a positive exit flag, which indicates convergence. In
that case, GlobalSearch updates the vector of GLobalOptimSolution objects. Call the
solution point xp and the objective function value fp. There are two cases:

» For every other solution point xq with objective function value fq,
|xqg - xp| > XTolerance * max(1l,|xp]|)
or
|fq - fp| > FunctionTolerance * max(1,|fp]).

In this case, GlobalSearch creates a new element in the vector of GlobalOptimSolution
objects. For details of the information contained in each object, see GlobalOptimSolution.

* For some other solution point xq with objective function value fq,
|xg - xp| <= XTolerance * max(1l,|xp]|)
and
|fqg - fp| <= FunctionTolerance * max(1,|fp]|).

In this case, GlobalSearch regards xp as equivalent to xg. The GlobalSearch algorithm
modifies the GlobalOptimSolution of xq by adding p to the cell array of X0 points.

There is one minor tweak that can happen to this update. If the exit flag for xq is greater than
1, and the exit flag for xp is 1, then xp replaces xq. This replacement can lead to some points
in the same basin being more than a distance of XTolerance from xp.

Update Basin Radius and Threshold

If the exit flag of the current fmincon run is positive:

a Set threshold to the score value at start point p.

b  Set basin radius for xp equal to the maximum of the existing radius (if any) and the distance
between p and xp.

Report to Iterative Display

When the GlobalSearch Display propertyis 'iter', every point that fmincon runs creates
one line in the GlobalSearch iterative display.

When fmincon Does Not Run

1

Update Counters
Increment the counter for every basin containing p. Reset the counter of every other basin to 0.

Increment the threshold counter if score(p) >= localSolverThreshold. Otherwise, reset the
counter to 0.
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2 React to Large Counter Values

For each basin with counter equal to MaxWaitCycle, multiply the basin radius by 1 -
BasinRadiusFactor. Reset the counter to 0. (Both MaxWaitCycle and BasinRadiusFactor
are settable properties of the GlobalSearch object.)

If the threshold counter equals MaxWaitCycle, increase the threshold:
new threshold = threshold + PenaltyThresholdFactor*(1 + abs(threshold)).

Reset the counter to 0.
3 Report to Iterative Display

Every 200th trial point creates one line in the GlobalSearch iterative display.
Create GlobalOptimSolution

After reaching MaxTime seconds or running out of trial points, GlobalSearch creates a vector of
GlobalOptimSolution objects. GlobalSearch orders the vector by objective function value, from
lowest (best) to highest (worst). This concludes the algorithm.

MultiStart Algorithm

When you run a MultiStart object, the algorithm performs the following steps:

* “Validate Inputs” on page 4-38

* “Generate Start Points” on page 4-38

» “Filter Start Points (Optional)” on page 4-39

* “Run Local Solver” on page 4-39

* “Check Stopping Conditions” on page 4-39

* “Create GlobalOptimSolution Object” on page 4-39

Validate Inputs

MultiStart checks input arguments for validity. Checks include running the local solver once on
problem inputs. Even when run in parallel, MultiStart performs these checks serially.

Generate Start Points

If you call MultiStart with the syntax
[x,fval]l = run(ms,problem,k)

for an integer k, MultiStart generates k - 1 start points exactly as if you used a
RandomStartPointSet object. The algorithm also uses the x0 start point from the problem
structure, for a total of k start points.

A RandomStartPointSet object does not have any points stored inside the object. Instead,
MultiStart calls list, which generates random points within the bounds given by the problem
structure. If an unbounded component exists, 1ist uses an artificial bound given by the
ArtificialBound property of the RandomStartPointSet object.

If you provide a CustomStartPointSet object, MultiStart does not generate start points, but
uses the points in the object.
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Filter Start Points (Optional)

If you set the StartPointsToRun property of the MultiStart object to 'bounds' or 'bounds-
ineqgs', MultiStart does not run the local solver from infeasible start points. In this context,
“infeasible” means start points that do not satisfy bounds, or start points that do not satisfy both
bounds and inequality constraints.

The default setting of StartPointsToRunis 'all’. In this case, MultiStart does not discard
infeasible start points.

Run Local Solver

MultiStart runs the local solver specified in problem.solver, starting at the points that pass the
StartPointsToRun filter. If MultiStart is running in parallel, it sends start points to worker
processors one at a time, and the worker processors run the local solver.

The local solver checks whether MaxTime seconds have elapsed at each of its iterations. If so, it exits
that iteration without reporting a solution.

When the local solver stops, MultiStart stores the results and continues to the next step.

Report to Iterative Display

When the MultiStart Display property is 'iter’, every point that the local solver runs creates
one line in the MultiStart iterative display.

Check Stopping Conditions

MultiStart stops when it runs out of start points. It also stops when it exceeds a total run time of
MaxTime seconds.

Create GlobalOptimSolution Object

After MultiStart reaches a stopping condition, the algorithm creates a vector of
GlobalOptimSolution objects as follows:

1  Sort the local solutions by objective function value (Fval) from lowest to highest. For the
lsgnonlin and lsqcurvefit local solvers, the objective function is the norm of the residual.

2 Loop over the local solutions j beginning with the lowest (best) Fval.

3 Find all the solutions k satisfying both:

|[Fval(k) - Fval(j)| <= FunctionTolerance*max(1, |[Fval(j)]|)

|x(k) - x(j)| <= XTolerance*max(1,|x(j)])

4 Record j, Fval(j), the local solver output structure for j, and a cell array of the start points
for j and all the k. Remove those points k from the list of local solutions. This point is one entry
in the vector of GlobalOptimSolution objects.

The resulting vector of GlobalOptimSolution objects is in order by Fval, from lowest (best) to
highest (worst).
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Report to Iterative Display

After examining all the local solutions, MultiStart gives a summary to the iterative display. This
summary includes the number of local solver runs that converged, the number that failed to
converge, and the number that had errors.
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Can You Certify That a Solution Is Global?

In this section...

“No Guarantees” on page 4-41

“Check if a Solution Is a Local Solution with patternsearch” on page 4-41
“Identify a Bounded Region That Contains a Global Solution” on page 4-42
“Use MultiStart with More Start Points” on page 4-42

No Guarantees

How can you tell if you have located the global minimum of your objective function? The short answer
is that you cannot; you have no guarantee that the result of a Global Optimization Toolbox solver is a
global optimum. While all Global Optimization Toolbox solvers repeatedly attempt to locate a global
solution, no solver employs an algorithm that can certify a solution as global.

However, you can use the strategies in this section for investigating solutions.

Check if a Solution Is a Local Solution with patternsearch

Before you can determine if a purported solution is a global minimum, first check that it is a local
minimum. To do so, run patternsearch on the problem.

To convert the problem to use patternsearch instead of fmincon or fminunc, enter
problem.solver = 'patternsearch';
Also, change the start point to the solution you just found, and clear the options:

problem.x0 = x;
problem.options = [];

For example, Check Nearby Points shows the following:

options = optimoptions(@fmincon, 'Algorithm', 'active-set');
ffun = @(x) (x(1)-(x(1)-x(2))"2);
problem = createOptimProblem('fmincon',
'objective',ffun,'x0',[1/2 1/3],
'b', [0 -11,'ub',[1 1], 'options',options);
[x,fval,exitflag] = fmincon(problem)

X =
1.0e-007 *
0 0.1614

fval =
-2.6059e-016

exitflag =
1

However, checking this purported solution with patternsearch shows that there is a better
solution. Start patternsearch from the reported solution x:
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[)

% set the candidate solution x as the start point

problem.x0 = x;

problem.solver = 'patternsearch’';

problem.options = [];

[xp, fvalp,exitflagp] = patternsearch(problem)

Optimization terminated: mesh size less than options.MeshTolerance.
Xp =

1.0000 -1.0000

fvalp =

-3.0000

exitflagp =

1

Identify a Bounded Region That Contains a Global Solution

Suppose you have a smooth objective function in a bounded region. Given enough time and start
points, MultiStart eventually locates a global solution.

Therefore, if you can bound the region where a global solution can exist, you can obtain some degree
of assurance that MultiStart locates the global solution.

For example, consider the function

2
f= ><6+yG+sin(><+y)(x2 +y2) — Cos 1 i

y2 (2 + x4 +x2y2 +y4).

The initial summands x5 + y% force the function to become large and positive for large values of |x| or
|y|. The components of the global minimum of the function must be within the bounds

-10 = x,y = 10,

since 10° is much larger than all the multiples of 10* that occur in the other summands of the
function.

You can identify smaller bounds for this problem; for example, the global minimum is between -2 and
2. It is more important to identify reasonable bounds than it is to identify the best bounds.

Use MultiStart with More Start Points

To check whether there is a better solution to your problem, run MultiStart with additional start
points. Use MultiStart instead of GlobalSearch for this task because GlobalSearch does not
run the local solver from all start points.

For example, see “Example: Searching for a Better Solution” on page 4-46.
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See Also

Related Examples
. “Refine Start Points” on page 4-44
. “What Is Global Optimization?” on page 1-25
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Refine Start Points

In this section...
“About Refining Start Points” on page 4-44
“Methods of Generating Start Points” on page 4-44

“Example: Searching for a Better Solution” on page 4-46

About Refining Start Points

If some components of your problem are unconstrained, GlobalSearch and MultiStart use
artificial bounds to generate random start points uniformly in each component. However, if your
problem has far-flung minima, you need widely dispersed start points to find these minima.

Use these methods to obtain widely dispersed start points:

* Give widely separated bounds in your problem structure.

* Use a RandomStartPointSet object with the MultiStart algorithm. Set a large value of the
ArtificialBound property in the RandomStartPointSet object.

* Use a CustomStartPointSet object with the MultiStart algorithm. Use widely dispersed start
points.

There are advantages and disadvantages of each method.

Method Advantages Disadvantages
Give bounds in problem Automatic point generation Makes a more complex Hessian
Can use with GlobalSearch Unclear how large to set the bounds
Easy to do Changes problem
Bounds can be asymmetric Only uniform points
Large ArtificialBound in Automatic point generation MultiStart only
RandomStartPointSet Does not change problem Only symmetric, uniform points
Easy to do Unclear how large to set
ArtificialBound
CustomStartPointSet Customizable MultiStart only
Does not change problem Requires programming for
generating points
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Methods of Generating Start Points

* “Uniform Grid” on page 4-44
* “Perturbed Grid” on page 4-45
* “Widely Dispersed Points for Unconstrained Components” on page 4-45

Uniform Grid

To generate a uniform grid of start points:
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1 Generate multidimensional arrays with ndgrid. Give the lower bound, spacing, and upper bound
for each component.

For example, to generate a set of three-dimensional arrays with

* First component from -2 through 0, spacing 0.5
* Second component from 0 through 2, spacing 0.25
* Third component from -10 through 5, spacing 1

[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
2 Place the arrays into a single matrix, with each row representing one start point. For example:

W= [X(:),Y(:),Z(:)];

In this example, W is a 720-by-3 matrix.
3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);
Call run with the CustomStartPointSet object as the third input. For example,

% Assume problem structure and ms MultiStart object exist
[x,fval,flag,outpt,manymins] = run(ms,problem,custpts);

Perturbed Grid
Integer start points can yield less robust solutions than slightly perturbed start points.
To obtain a perturbed set of start points:

1 Generate a matrix of start points as in steps 1-2 of “Uniform Grid” on page 4-44.
2  Perturb the start points by adding a random normal matrix with 0 mean and relatively small
variance.

For the example in “Uniform Grid” on page 4-44, after making the W matrix, add a perturbation:
[X,Y,Z] = ndgrid(-2:.5:0,0:.25:2,-10:5);
W= [X(:),Y(:),Z2(:)]1;
W=W+ 0.01l*randn(size(W));
3 Put the matrix into a CustomStartPointSet object. For example:

custpts = CustomStartPointSet(W);

Call run with the CustomStartPointSet object as the third input. For example,

% Assume problem structure and ms MultiStart object exist
[x,fval, flag,outpt,manymins] = run(ms,problem,custpts);

Widely Dispersed Points for Unconstrained Components
Some components of your problem can lack upper or lower bounds. For example:

» Although no explicit bounds exist, there are levels that the components cannot attain. For
example, if one component represents the weight of a single diamond, there is an implicit upper
bound of 1 kg (the Hope Diamond is under 10 g). In such a case, give the implicit bound as an
upper bound.
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* There truly is no upper bound. For example, the size of a computer file in bytes has no effective
upper bound. The largest size can be in gigabytes or terabytes today, but in 10 years, who knows?

For truly unbounded components, you can use the following methods of sampling. To generate
approximately 1/n points in each region (exp(n),exp(n+1)), use the following formula. If u is random
and uniformly distributed from 0 through 1, then r = 2u - 1 is uniformly distributed between -1 and
1. Take

y = sgn(r)(exp(1/|r]) —e).

y is symmetric and random. For a variable bounded below by 1b, take
y=1b+ (exp(1/u) —e).

Similarly, for a variable bounded above by ub, take
y =1ub - (exp(1/u) —e).

For example, suppose you have a three-dimensional problem with

* x(1)>0

* x(2) <100

* X(3) unconstrained

To make 150 start points satisfying these constraints:

u = rand(150,3);

rl =1./u(:,1);

rl = exp(rl) - exp(l);

r2 =1./u(:,2);

r2 = -exp(r2) + exp(l) + 100;

r3 = 1./(2%u(:,3)-1);

r3 = sign(r3).*(exp(abs(r3)) - exp(1l));

custpts = CustomStartPointSet([rl,r2,r3]1);

The following is a variant of this algorithm. Generate a number between 0 and infinity by the method
for lower bounds. Use this number as the radius of a point. Generate the other components of the
point by taking random numbers for each component and multiply by the radius. You can normalize
the random numbers, before multiplying by the radius, so their norm is 1. For a worked example of
this method, see “MultiStart Without Bounds, Widely Dispersed Start Points” on page 4-88.

Example: Searching for a Better Solution

MultiStart fails to find the global minimum in “Multiple Local Minima Via MultiStart” on page 4-
59. There are two simple ways to search for a better solution:

* Use more start points
* Give tighter bounds on the search space

Set up the problem structure and MultiStart object:

problem = createOptimProblem('fminunc', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50], 'options’', ...
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optimoptions(@fminunc, 'Algorithm', 'quasi-newton'));
ms = MultiStart;

Use More Start Points

Run MultiStart on the problem for 200 start points instead of 50:

rng(14, 'twister') % for reproducibility
[x,fval,eflag,output,manymins] = run(ms,problem,b200)

MultiStart completed some of the runs from the start points.
53 out of 200 local solver runs converged with a positive local solver exit flag.
X =

1.0e-06 *

-0.2284 -0.5567

fval =

2.1382e-12

eflag =

2

output =
struct with fields:

funcCount: 32670
localSolverTotal: 200
localSolverSuccess: 53
localSolverIncomplete: 147
localSolverNoSolution: 0
message: 'MultiStart completed some of the runs from the start points.««53 out

manymins =
1x53 GlobalOptimSolution

Properties:
X
Fval
Exitflag
Output
X0

This time MultiStart found the global minimum, and found 51 local minima.

To see the range of local solutions, enter histogram([manymins.Fval], 10).
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Tighter Bound on the Start Points

Suppose you believe that the interesting local solutions have absolute values of all components less
than 100. The default value of the bound on start points is 1000. To use a different value of the bound,
generate a RandomStartPointSet with the ArtificialBound property set to 100:

startpts = RandomStartPointSet('ArtificialBound',100,...
'NumStartPoints',50);
[x,fval,eflag,output,manymins] = run(ms,problem,startpts)
MultiStart completed some of the runs from the start points.
29 out of 50 local solver runs converged with a positive local solver exit flag.
X =

1.0e-08 *

0.9725 -0.6198

fval =

1.4955e-15

eflag =
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output =
struct with fields:

funcCount: 7431
localSolverTotal: 50
localSolverSuccess: 29
localSolverIncomplete: 21
localSolverNoSolution: 0

message: 'MultiStart completed some of the runs from the start points.«~29 out

manymins =
1x25 GlobalOptimSolution

Properties:
X
Fval
Exitflag
Output
X0

MultiStart found the global minimum, and found 22 distinct local solutions. To see the range of
local solutions, enter histogram([manymins.Fvall], 10).

0 50 100 150 200 250 300 350 400 450 500
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Compared to the minima found in “Use More Start Points” on page 4-47, this run found better
(smaller) minima, and had a higher percentage of successful runs.

See Also

Related Examples

. “Global or Multiple Starting Point Search”
. “Isolated Global Minimum” on page 4-85
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Change Options

In this section...

“How to Determine Which Options to Change” on page 4-51
“Changing Local Solver Options” on page 4-51

“Changing Global Options” on page 4-52

How to Determine Which Options to Change

After you run a global solver, you might want to change some global or local options. To determine
which options to change, the guiding principle is:
» To affect the local solver, set local solver options.

» To affect the start points or solution set, change the problem structure, or set the global solver
object properties.

For example, to obtain:

* More local minima — Set global solver object properties.
» Faster local solver iterations — Set local solver options.

» Different tolerances for considering local solutions identical (to obtain more or fewer local
solutions) — Set global solver object properties.

» Different information displayed at the command line — Decide if you want iterative display from
the local solver (set local solver options) or global information (set global solver object properties).

» Different bounds, to examine different regions — Set the bounds in the problem structure.

Examples of Choosing Problem Options

» To start your local solver at points only satisfying inequality constraints, set the
StartPointsToRun property in the global solver object to 'bounds-ineqs'. This setting can
speed your solution, since local solvers do not have to attempt to find points satisfying these
constraints. However, the setting can result in many fewer local solver runs, since the global
solver can reject many start points. For an example, see “Optimize Using Only Feasible Start
Points” on page 4-75.

* To use the fmincon interior-point algorithm, set the local solver Algorithm option to
"interior-point'. For an example showing how to do this, see “Examples of Updating Problem
Options” on page 4-52.

» For your local solver to have different bounds, set the bounds in the problem structure. Examine
different regions by setting bounds.

» To see every solution that has positive local exit flag, set the XTolerance property in the global
solver object to 0. For an example showing how to do this, see “Changing Global Options” on page
4-52.

Changing Local Solver Options

There are several ways to change values in local options:

* Update the values using dot notation and optimoptions. The syntax is
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problem.options = optimoptions(problem.options, 'Parameter',6value,...);
You can also replace the local options entirely:

problem.options = optimoptions(@solvername, 'Parameter',value,...);
* Use dot notation on one local option. The syntax is

problem.options.Parameter = newvalue;
* Recreate the entire problem structure. For details, see “Create Problem Structure” on page 4-4.
Examples of Updating Problem Options
1 Create a problem structure:

problem = createOptimProblem('fmincon','x0"',[-1 2],
'objective',@rosenboth);
2 Set the problem to use the sqp algorithm in fmincon:

problem.options.Algorithm = 'sqgp';
3 Update the problem to use the gradient in the objective function, have a FunctionTolerance
value of 1e-8, and a XTolerance value of 1le-7:

problem.options = optimoptions(problem.options, 'GradObj', 'on',
'"FunctionTolerance',le-8, 'XTolerance',le-7);

Changing Global Options

There are several ways to change characteristics of a GlobalSearch or MultiStart object:
* Use dot notation. For example, suppose you have a default MultiStart object:

ms MultiStart

ms

MultiStart with properties:

UseParallel: 0
Display: 'final'
FunctionTolerance: 1.0000e-06
MaxTime: Inf
OutputFcn: []
PlotFcn: []
StartPointsToRun: 'all'
XTolerance: 1.0000e-06

To change ms to have its XTolerance value equal to 1e-3, update the XTolerance field:

ms.XTolerance = le-3
ms =

MultiStart with properties:

UseParallel: 0
Display: 'final’
FunctionTolerance: 1.0000e-06
MaxTime: Inf
OutputFcn: []

4-52



Change Options

PlotFcn: []
StartPointsToRun: 'all'
XTolerance: 1.0000e-03

* Reconstruct the object starting from the current settings. For example, to set the
FunctionTolerance field in ms to 1le-3, retaining the nondefault value for XTolerance:

ms MultiStart(ms, 'FunctionTolerance',le-3)

ms

MultiStart with properties:

UseParallel: 0
Display: 'final'
FunctionTolerance: 1.0000e-03
MaxTime: Inf
OutputFcn: []
PlotFcn: []
StartPointsToRun: 'all'
XTolerance: 1.0000e-03

* Convert a GlobalSearch object to a MultiStart object, or vice-versa. For example, with the ms
object from the previous example, create a GLobalSearch object with the same values of
XTolerance and FunctionTolerance:

gs GlobalSearch(ms)

gs

GlobalSearch with properties:

NumTrialPoints: 1000
BasinRadiusFactor: 0.2000
DistanceThresholdFactor: 0.7500
MaxWaitCycle: 20
NumStageOnePoints: 200
PenaltyThresholdFactor: 0.2000
Display: 'final'
FunctionTolerance: 1.0000e-03
MaxTime: Inf
OutputFcn: []
PlotFcn: T[]
StartPointsToRun: 'all'
XTolerance: 1.0000e-03

See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Reproduce Results

4-54

In this section...

“Identical Answers with Pseudorandom Numbers” on page 4-54

“Steps to Take in Reproducing Results” on page 4-54

“Example: Reproducing a GlobalSearch or MultiStart Result” on page 4-54
“Parallel Processing and Random Number Streams” on page 4-55

Identical Answers with Pseudorandom Numbers

GlobalSearch and MultiStart use pseudorandom numbers in choosing start points. Use the same
pseudorandom number stream again to:

* Compare various algorithm settings.
* Have an example run repeatably.
* Extend a run, with known initial segment of a previous run.

Both GlobalSearch and MultiStart use the default random number stream.

Steps to Take in Reproducing Results

1 Before running your problem, store the current state of the default random number stream:

stream = rng;
Run your GlobalSearch or MultiStart problem.
Restore the state of the random number stream:

wWN

rng(stream)
4 If you run your problem again, you get the same result.

Example: Reproducing a GlobalSearch or MultiStart Result

This example shows how to obtain reproducible results for “Find Global or Multiple Local Minima” on
page 4-57. The example follows the procedure in “Steps to Take in Reproducing Results” on page 4-
54,

1 Store the current state of the default random number stream:

stream = rng;
2 Create the sawtoothxy function file:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
Kr.”2./(r+l);

f = g.*%h;

end

3 Create the problem structure and GlobalSearch object:

problem = createOptimProblem('fmincon', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
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'x0',[100,-50], 'options', ...
optimoptions(@fmincon, 'Algorithm', 'sqp'));
gs = GlobalSearch('Display’', 'iter');
Run the problem:

[x,fvall = run(gs,problem)

Num Pts Best Current Threshold Local Local

Analyzed F-count f(x) Penalty Penalty f(x) exitflag Procedure
0 465 422.9 422.9 2 Initial Point

200 1730 1.547e-015 1.547e-015 1 Stage 1 Local

300 1830 1.547e-015 6.01e+004 1.074 Stage 2 Search

400 1930 1.547e-015 1.47e+005 4.16 Stage 2 Search

500 2030 1.547e-015 2.63e+004 11.84 Stage 2 Search

600 2130 1.547e-015 1.341e+004 30.95 Stage 2 Search

700 2230 1.547e-015 2.562e+004 65.25 Stage 2 Search

800 2330 1.547e-015 5.217e+004 163.8 Stage 2 Search

900 2430 1.547e-015 7.704e+004 409.2 Stage 2 Search

981 2587 1.547e-015 42.24 516.6 7.573 1 Stage 2 Local
1000 2606 1.547e-015 3.299e+004 42.24 Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.
All 3 local solver runs converged with a positive local solver exit flag.
X =
1.0e-007 *

0.0414 0.1298

fval =
1.5467e-015

You might obtain a different result when running this problem, since the random stream was in
an unknown state at the beginning of the run.
Restore the state of the random number stream:

rng(stream)
Run the problem again. You get the same output.

[x,fvall = run(gs,problem)

Num Pts Best Current Threshold Local Local
Analyzed F-count f(x) Penalty Penalty f(x) exitflag Procedure
0 465 422.9 422.9 2 Initial Point
200 1730 1.547e-015 1.547e-015 1 Stage 1 Local

. Output deleted to save space ...

X =
1.0e-007 *
0.0414 0.1298

fval =
1.5467e-015

Parallel Processing and Random Number Streams

You obtain reproducible results from MultiStart when you run the algorithm in parallel the same
way as you do for serial computation. Runs are reproducible because MultiStart generates
pseudorandom start points locally, and then distributes the start points to parallel processors.
Therefore, the parallel processors do not use random numbers.

To reproduce a parallel MultiStart run, use the procedure described in “Steps to Take in
Reproducing Results” on page 4-54. For a description of how to run MultiStart in parallel, see
“How to Use Parallel Processing in Global Optimization Toolbox” on page 14-11.
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See Also

Related Examples
. “Global or Multiple Starting Point Search”
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Find Global or Multiple Local Minima

In this section...

“Function to Optimize” on page 4-57

“Single Global Minimum Via GlobalSearch” on page 4-58
“Multiple Local Minima Via MultiStart” on page 4-59

Function to Optimize

This example illustrates how GlobalSearch finds a global minimum efficiently, and how
MultiStart finds many more local minima.

The objective function for this example has many local minima and a unique global minimum. In polar
coordinates, the function is
fir,t) = g(Nh(t),

where

g(r) = [sin(r) - SR20) | sin(@r) _ sin(4r)
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The global minimum is at r = 0, with objective function 0. The function g(r) grows approximately
linearly in r, with a repeating sawtooth shape. The function h(t) has two local minima, one of which is
global.

sawtoothxy(x,y)

Single Global Minimum Via GlobalSearch
1 Write a function file to compute the objective:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4) ...
Kr.”2./(r+l);

f = g.*h;

end

2 Create the problem structure. Use the 'sqp' algorithm for fmincon:

problem = createOptimProblem('fmincon', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50], 'options"', ...
optimoptions(@fmincon, 'Algorithm', 'sqp', 'Display', 'off'));

The start point is [100, -50] instead of [0,0], so GlobalSearch does not start at the global
solution.
3 Validate the problem structure by running fmincon:
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[x,fval] = fmincon(problem)
X =

45.7332 -107.6469

fval =

555.5422
Create the GlobalSearch object, and set iterative display:

gs = GlobalSearch('Display’', 'iter');
Run the solver:

rng(14, 'twister') % for reproducibility
[x,fvall = run(gs,problem)

Num Pts Best Current Threshold Local Local

Analyzed F-count f(x) Penalty Penalty f(x) exitflag Procedure
0 200 555.5 555.5 0 Initial Point

200 1463 1.547e-15 1.547e-15 1 Stage 1 Local
300 1564 1.547e-15 5.858e+04 1.074 Stage 2 Search
400 1664 1.547e-15 1.84e+05 4.16 Stage 2 Search
500 1764 1.547e-15 2.683e+04 11.84 Stage 2 Search

600 1864 1.547e-15 1.122e+04 30.95 Stage 2 Search

700 1964 1.547e-15 1.353e+04 65.25 Stage 2 Search

800 2064 1.547e-15 6.249e+04 163.8 Stage 2 Search

900 2164 1.547e-15 4.119e+04 409.2 Stage 2 Search

950 2356 1.547e-15 477 589.7 387 2 Stage 2 Local

952 2420 1.547e-15 368.4 477 250.7 2 Stage 2 Local
1000 2468 1.547e-15 4.031e+04 530.9 Stage 2 Search

GlobalSearch stopped because it analyzed all the trial points.
3 out of 4 local solver runs converged with a positive local solver exit flag.
X =

1.0e-07 *

0.0414 0.1298

fval =

1.5467e-15

You can get different results, since GlobalSearch is stochastic.

The solver found three local minima, and it found the global minimum near [0,0].

Multiple Local Minima Via MultiStart

1

Write a function file to compute the objective:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates
h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4)
Kru.n2./(r+l);

f = g.*%h;

end

Create the problem structure. Use the fminunc solver with the Algorithm option set to
"quasi-newton'. The reasons for these choices are:
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* The problem is unconstrained. Therefore, fminunc is the appropriate solver; see
“Optimization Decision Table”.

* The default fminunc algorithm requires a gradient; see “Choosing the Algorithm”. Therefore,

set Algorithmto 'quasi-newton'.

problem = createOptimProblem('fminunc', ...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50], 'options’', ...
optimoptions(@fminunc, 'Algorithm', 'quasi-newton', 'Display', 'off"'));
Validate the problem structure by running it:

[x,fval] = fminunc(problem)
X =

1.7533 -111.9488

fval =

577.6960
Create a default MultiStart object:

ms = MultiStart;
Run the solver for 50 iterations, recording the local minima:

% rng(1l) % uncomment to obtain the same result
[x,fval,eflag,output,manymins] = run(ms,problem,50)

MultiStart completed some of the runs from the start points.

9 out of 50 local solver runs converged with a positive local solver exit flag.

X =

-142.4608 406.8030

fval =

1.2516e+03

eflag =

2

output =
struct with fields:

funcCount: 8586
localSolverTotal: 50
localSolverSuccess: 9
localSolverIncomplete: 41
localSolverNoSolution: 0

message: 'MultiStart completed some of the runs from the start points.aa9 c



Find Global or Multiple Local Minima

manymins =
1x9 GlobalOptimSolution array with properties:

X

Fval
Exitflag
Output
X0

You can get different results, since MultiStart is stochastic.

The solver did not find the global minimum near [0, 0]. It found 10 distinct local minima.
Plot the function values at the local minima:

histogram([manymins.Fval],10)

B0OOO 10000 12000

Plot the function values at the three best points:

bestf = [manymins.Fvall;
histogram(bestf(1:3),10)
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MultiStart started fminunc from start points with components uniformly distributed between -
1000 and 1000. fminunc often got stuck in one of the many local minima. fminunc exceeded its
iteration limit or function evaluation limit 40 times.

See Also

More About
. “Workflow for GlobalSearch and MultiStart” on page 4-3
. “Visualize the Basins of Attraction” on page 4-24
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Maximizing Monochromatic Polarized Light Interference
Patterns Using GlobalSearch and MultiStart

This example shows how to use the functions GlobalSearch and MultiStart.
Introduction

This example shows how Global Optimization Toolbox functions, particularly GlobalSearch and
MultiStart, can help locate the maximum of an electromagnetic interference pattern. For simplicity
of modeling, the pattern arises from monochromatic polarized light spreading out from point sources.

The electric field due to source i measured in the direction of polarization at point x and time t is

; _ _
E; = ——= sin(¢; + w(t - di(z)/)),
dila)

where #i is the phase at time zero for source i, ¢ is the speed of light, «* is the frequency of the light,
Aj is the amplitude of source i, and di(r} is the distance from source i to .

For a fixed point « the intensity of the light is the time average of the square of the net electric field.
The net electric field is sum of the electric fields due to all sources. The time average depends only on
the sizes and relative phases of the electric fields at #. To calculate the net electric field, add up the
individual contributions using the phasor method. For phasors, each source contributes a vector. The
length of the vector is the amplitude divided by distance from the source, and the angle of the vector,

@i — widi(x)/¢ is the phase at the point.

For this example, we define three point sources with the same frequency («) and amplitude (), but
varied initial phase (¥i). We arrange these sources on a fixed plane.

[}

% Frequency is proportional to the number of peaks
relFreqConst = 2*pi*2.5;

amp = 2.2;

phase = -[0; 0.54; 2.07];

numSources = 3;
height = 3;

% ALl point sources are aligned at [x i,y 1i,z]
xcoords = [2.4112

0.2064

1.6787];

[0.3957

0.3927

0.98771;
height*ones(numSources,1);

ycoords

zcoords

origins = [xcoords ycoords zcoords];
Visualize the Interference Pattern
Now let's visualize a slice of the interference pattern on the plane z = 0.

As you can see from the plot below, there are many peaks and valleys indicating constructive and
destructive interference.
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% Pass additional parameters via an anonymous function:

wavelntensity x = @(x) waveIntensity(x,amp,phase,
relFreqConst,numSources,origins);

% Generate the grid

[X,Y] = meshgrid(-4:0.035:4,-4:0.035:4);

% Compute the intensity over the grid

Z = arrayfun(@(x,y) waveIntensity x([x yl),X,Y);

% Plot the surface and the contours

figure

surf(X,Y,Z, 'EdgeColor', 'none")

xlabel('x")

ylabel('y")

zlabel('intensity')

intensity

Posing the Optimization Problem

We are interested in the location where this wave intensity reaches its highest peak.

The wave intensity (J) falls off as we move away from the source proportional to 1/d;(x), Therefore,
let's restrict the space of viable solutions by adding constraints to the problem.

If we limit the exposure of the sources with an aperture, then we can expect the maximum to lie in
the intersection of the projection of the apertures onto our observation plane. We model the effect of
an aperture by restricting the search to a circular region centered at each source.

We also restrict the solution space by adding bounds to the problem. Although these bounds may be
redundant (given the nonlinear constraints), they are useful since they restrict the range in which
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start points are generated (see “How GlobalSearch and MultiStart Work” on page 4-34 for more
information).

Now our problem has become:

max Iz, y)
Ty

subject to

¥ V3.
(z—za)"+(y—Wa) =

5

(z — 22)* + (¥ — y2)® < ra

12 2 . 3
(r—2a) " + (¥ —ya) <713

where (€ %o ) and 7n are the coordinates and aperture radius of the n'" point source, respectively.
Each source is given an aperture with radius 3. The given bounds encompass the feasible region.

The objective (1T (x,y }) and nonlinear constraint functions are defined in separate MATLAB® files,
waveIntensity.mand apertureConstraint.m, respectively, which are listed at the end of this
example.

Visualization with Constraints

Now let's visualize the contours of our interference pattern with the nonlinear constraint boundaries
superimposed. The feasible region is the interior of the intersection of the three circles (yellow,
green, and blue). The bounds on the variables are indicated by the dashed-line box.

% Visualize the contours of our interference surface

domain = [-3 5.5 -4 5];

figure;

ezcontour(@(X,Y) arrayfun(@(x,y) waveIntensity x([x yl),X,Y),domain,150);
hold on

% Plot constraints

gl = @(x,y) (x-xcoords(1l)).”2 + (y-ycoords(1l)).”2 - 9;
g2 = @(x,y) (x-xcoords(2)).”2 + (y-ycoords(2)).72 - 9;
g3 = @(x,y) (x-xcoords(3)).”2 + (y-ycoords(3))."2 - 9;
hl = ezplot(gl,domain);

hl.Color = [0.8 0.7 0.1]; % yellow
hl.LineWidth = 1.5;

h2 = ezplot(g2,domain);
h2.Color = [0.3 0.7 0.5
h2.LineWidth = 1.5;
h3 = ezplot(g3,domain);
h3.Color = [0.4 0.4 0.6
h3.LineWidth = 1.5;

1; % green
1; % blue

% Plot bounds
b = [-0.5 -2];
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ub = [3.5 31;

line([1lb(1) 1b(1)1,[lb(2) ub(

line([ub(1) ub(1)1,[lb(2) ub(

line([1b(1) ub(1)]1,[lb(2) 1b(2)],'LineStyle’,
line([lb(1) ub(1)]1,[ub(2) ub(2)],'LineStyle’,
title('Pattern Contours with Constraint Boundarie

2)],'LineStyle’', '--
2)],'LineStyle’', '--
2

)
)
)
)
s')

Pattern Contours with Constraint Boundaries

Setting Up and Solving the Problem with a Local Solver
Given the nonlinear constraints, we need a constrained nonlinear solver, namely, fmincon.

Let's set up a problem structure describing our optimization problem. We want to maximize the
intensity function, so we negate the values returned form waveIntensity. Let's choose an arbitrary
start point that happens to be near the feasible region.

For this small problem, we'll use fmincon's SQP algorithm.

% Pass additional parameters via an anonymous function:
apertureConstraint x = @(x) apertureConstraint(x,xcoords,ycoords);

% Set up fmincon's options

x0 = [3 -1];

opts = optimoptions('fmincon', 'Algorithm', 'sqgp');

problem = createOptimProblem('fmincon', 'objective',
@(x) -waveIntensity x(x),'x0',x0,'lb',1lb, 'ub',ub,
‘nonlcon',apertureConstraint x, '‘options',opts);
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% Call fmincon
[xlocal, fvallocal] = fmincon(problem)

Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in

feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xlocal =

-0.5000 0.4945

fvallocal =

-1.4438

Now, let's see how we did by showing the result of fmincon in our contour plot. Notice that fmincon
did not reach the global maximum, which is also annotated on the plot. Note that we'll only plot the
bound that was active at the solution.

[~,maxIdx] = max(Z(:));

xmax = [X(maxIdx),Y(maxIdx)]
figure

contour(X,Y,Z)

hold on

% Show bounds
line([1b(1) lb(1)1,[lb(2) ub(2)],'LineStyle',"'--")

% Create textarrow showing the location of xlocal

annotation('textarrow',[0.25 0.21],[0.86 0.60], 'TextEdgeColor',[0 O O], ...
'TextBackgroundColor',[1 1 1], 'FontSize',11,'String',{'Single Run Result'});

% Create textarrow showing the location of xglobal

annotation('textarrow',[0.44 0.50],[0.63 0.58], 'TextEdgeColor',[0 O O], ...
'TextBackgroundColor',[1 1 1], 'FontSize',12,'String"',{'Global Max'});

axis([-1 3.75 -3 31)

Xmax =

1.2500 0.4450
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Using GlobalSearch and MultiStart

Given an arbitrary initial guess, fmincon gets stuck at a nearby local maximum. Global Optimization
Toolbox solvers, particularly GlobalSearch and MultiStart, give us a better chance at finding the
global maximum since they will try fmincon from multiple generated initial points (or our own
custom points, if we choose).

Our problem has already been set up in the problem structure, so now we construct our solver
objects and run them. The first output from run is the location of the best result found.

% Construct a GlobalSearch object

gs = GlobalSearch;

% Construct a MultiStart object based on our GlobalSearch attributes
ms = MultiStart;

rng(4, 'twister') % for reproducibility

% Run GlobalSearch

tic;

[xgs,~,~,~,solsgs] = run(gs,problem);
toc

Xgs

% Run MultiStart with 15 randomly generated points
tic;
[xms,~,~,~,solsms] = run(ms,problem,15);
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toc
Xxms
GlobalSearch stopped because it analyzed all the trial points.

All 14 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.229525 seconds.

Xgs =

1.2592 0.4284

MultiStart completed the runs from all start points.

All 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.109984 seconds.

xms =

1.2592 0.4284

Examining Results

Let's examine the results that both solvers have returned. An important thing to note is that the
results will vary based on the random start points created for each solver. Another run through this
example may give different results. The coordinates of the best results xgs and xms printed to the
command line. We'll show unique results returned by GlobalSearch and MultiStart and highlight
the best results from each solver, in terms of proximity to the global solution.

The fifth output of each solver is a vector containing distinct minima (or maxima, in this case) found.
We'll plot the (x,y) pairs of the results, solsgs and solsms, against our contour plot we used before.

% Plot GlobalSearch results using the '*' marker
xGS = cell2mat({solsgs(:).X}");
scatter(xGS(:,1),xGS(:,2),"'*", 'MarkerEdgeColor',[0 0 1], 'LineWidth',1.25)

% Plot MultiStart results using a circle marker

xMS = cell2mat({solsms(:).X}");

scatter(xMS(:,1),xMS(:,2),'o", 'MarkerEdgeColor',[0 0 0], 'LineWidth',1.25)
legend('Intensity', 'Bound', 'GlobalSearch', 'MultiStart', 'Location', 'best"')

title('GlobalSearch and MultiStart Results')
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GlobalSearch and MultiStart Results
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Relaxing the Bounds

With the tight bounds on the problem, both GlobalSearch and MultiStart were able to locate the

global maximum in this run.

Finding tight bounds can be difficult to do in practice, when not much is known about the objective
function or constraints. In general though, we may be able to guess a reasonable region in which we
would like to restrict the set of start points. For illustration purposes, let's relax our bounds to define
a larger area in which to generate start points and re-try the solvers.

% Relax the bounds to spread out the start points

problem.lb = -5*ones(2,1);
problem.ub = 5*ones(2,1);

% Run GlobalSearch

tic;

[xgs,~,~,~,solsgs] = run(gs,problem);
toc

Xgs

% Run MultiStart with 15 randomly generated points
tic;

[xms,~,~,~,s0olsms] = run(ms,problem,15);

toc

Xms

GlobalSearch stopped because it analyzed all the trial

points.
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All 4 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.173760 seconds.

Xgs =

0.6571 -0.2096

MultiStart completed the runs from all start points.

A1l 15 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.134150 seconds.

Xxms =

2.4947 -0.1439

% Show the contours
figure
contour(X,Y,Z)

hold on

% Create textarrow showing the location of xglobal
annotation('textarrow',[0.44 0.50],[0.63 0.58], 'TextEdgeColor',[0 O O], ...

'TextBackgroundColor',[1 1 1], 'FontSize',12,'String',{'Global Max'});
axis([-1 3.75 -3 3])

% Plot GlobalSearch results using the '*' marker
xGS = cellZ2mat({solsgs(:).X}"');
scatter(xGS(:,1),xGS(:,2),"'*", 'MarkerEdgeColor',[0 0 1], 'LineWidth',1.25)

% Plot MultiStart results using a circle marker
xMS = cell2mat({solsms(:).X}");
scatter(xMS(:,1),xMS(:,2),'o", 'MarkerEdgeColor',[0 0@ O], 'LineWidth',1.25)

% Highlight the best results from each:

% GlobalSearch result in red, MultiStart result in blue
plot(xgs(1l),xgs(2),'sb', 'MarkerSize',12, 'MarkerFaceColor',[1 0 0])
plot(xms(1l),xms(2), " 'sb', 'MarkerSize',12, 'MarkerFaceColor',[0 0 1])
legend('Intensity', 'GlobalSearch', 'MultiStart', 'Best GS', 'Best MS'

title('GlobalSearch and MultiStart Results with Relaxed Bounds')

, 'Location', 'best"')
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GlobalSearch anl:l MultiStart Results with Relaxed Bounds
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The best result from GlobalSearch is shown by the red square and the best result from
MultiStart is shown by the blue square.

Tuning GlobalSearch Parameters

Notice that in this run, given the larger area defined by the bounds, neither solver was able to
identify the point of maximum intensity. We could try to overcome this in a couple of ways. First, we
examine GlobalSearch.

Notice that GlobalSearch only ran fmincon a few times. To increase the chance of finding the
global maximum, we would like to run more points. To restrict the start point set to the candidates
most likely to find the global maximum, we'll instruct each solver to ignore start points that do not
satisfy constraints by setting the StartPointsToRun property to bounds-ineqgs. Additionally, we
will set the MaxWaitCycle and BasinRadiusFactor properties so that GlobalSearch will be able
to identify the narrow peaks quickly. Reducing MaxWaitCycle causes GlobalSearch to decrease
the basin of attraction radius by the BasinRadiusFactor more often than with the default setting.

% Increase the total candidate points, but filter out the infeasible ones
gs = GlobalSearch(gs, 'StartPointsToRun', 'bounds-ineqs"',
'MaxWaitCycle',3, 'BasinRadiusFactor',0.3);
% Run GlobalSearch
tic;
xgs = run(gs,problem);
toc
Xgs
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GlobalSearch stopped because it analyzed all the trial points.

All 10 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.242955 seconds.

Xgs =

1.2592 0.4284

Utilizing MultiStart's Parallel Capabilities

A brute force way to improve our chances of finding the global maximum is to simply try more start
points. Again, this may not be practical in all situations. In our case, we've only tried a small set so far
and the run time was not terribly long. So, it's reasonable to try more start points. To speed the
computation we'll run MultiStart in parallel if Parallel Computing Toolbox™ is available.

% Set the UseParallel property of MultiStart
ms = MultiStart(ms, 'UseParallel’',true);

try
demoOpenedPool = false;
% Create a parallel pool if one does not already exist
% (requires Parallel Computing Toolbox)
if max(size(gcp)) == 0 % if no pool
parpool
demoOpenedPool = true;
end
catch ME
warning(message('globaloptim:globaloptimdemos:opticallnterferenceDemo:noPCT"));
end

% Run the solver

tic;

xms = run(ms,problem,100);

toc

Xms

if demoOpenedPool
% Make sure to delete the pool if one was created in this example
delete(gcp) % delete the pool

end

MultiStart completed the runs from all start points.

All 100 local solver runs converged with a positive local solver exit flag.
Elapsed time is 0.956671 seconds.

xXms =

1.2592 0.4284

Objective and Nonlinear Constraints

Here we list the functions that define the optimization problem:
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function p = wavelntensity(x,amp,phase,relFreqConst,numSources,origins)
% WaveIntensity Intensity function for opticalInterferenceDemo.

% Copyright 2009 The MathWorks, Inc.

d = distanceFromSource(x,numSources,origins);
ampVec = [sum(amp./d .* cos(phase - d*relFreqgConst));
sum(amp./d .* sin(phase - d*relFreqConst))];

Intensity is | |AmpVec]||"2

p ampVec ' *ampVec;

function [c,ceq] = apertureConstraint(x,xcoords,ycoords)
% apertureConstraint Aperture constraint function for opticallnterferenceDemo.

%  Copyright 2009 The MathWorks, Inc.

ce [1;
c (x(1) - xcoords).”2 + (x(2) - ycoords).”2 - 9;

(o]

function d = distanceFromSource(v,numSources,origins)
% distanceFromSource Distance function for opticallnterferenceDemo.

[)

% Copyright 2009 The MathWorks, Inc.

d = zeros(numSources,1);
for k = 1l:numSources

d(k) = norm(origins(k,:) - [v 0]);
end

See Also
GlobalSearch | MultiStart

More About

. “Example: Searching for a Better Solution” on page 4-46
. “Isolated Global Minimum” on page 4-85
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Optimize Using Only Feasible Start Points

You can set the StartPointsToRun option so that MultiStart and GlobalSearch use only start
points that satisfy inequality constraints. This option can speed your optimization, since the local
solver does not have to search for a feasible region. However, the option can cause the solvers to miss
some basins of attraction.

There are three settings for the StartPointsToRun option:

* all — Accepts all start points
* bounds — Rejects start points that do not satisfy bounds
* bounds-ineqs — Rejects start points that do not satisfy bounds or inequality constraints

For example, suppose your objective function is

function y = tiltcircle(x)

vx = X(:)-[4;4]; % ensure vx is in column form

y = vx'*[1;1] + sqrt(1l6 - vx'*vx); % complex if norm(x-[4;4])>4

tiltcircle returns complex values for norm(x - [4 4]) > 4.

tiltcircle([x v])

Write a constraint function that is positive on the set where norm(x - [4 4]) > 4

function [c ceqg] = myconstraint(x)
ceq = [];
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cx = X(:) - [4;4]; % ensure x is a column vector
C = cx'*cx - 16; % negative where tiltcircle(x) is real

Set GlobalSearch to use only start points satisfying inequality constraints:

gs = GlobalSearch('StartPointsToRun', 'bounds-ineqs');

To complete the example, create a problem structure and run the solver:

opts = optimoptions(@fmincon, 'Algorithm', 'interior-point');
problem = createOptimProblem('fmincon', ...
'x0',[4 4], 'objective',@tiltcircle,...
'nonlcon',@myconstraint,'lb',[-10 -10],...
'ub',[10 101, 'options',opts);
rng(7, 'twister'); % for reproducibility
[x,fval,exitflag,output,solutionset] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.

A1l 5 local solver runs converged with a positive local solver exit flag.

X =

1.1716 1.1716

fval =

-5.6530

exitflag =

1

output =
struct with fields:

funcCount: 3242
localSolverTotal: 5
localSolverSuccess: 5
localSolverIncomplete: 0
localSolverNoSolution: 0

message: 'GlobalSearch stopped because it analyzed all the trial po...'

solutionset =
1x4 GlobalOptimSolution array with properties:

X

Fval
Exitflag
Output
X0
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tiltcircle([x,y])

10 —

=10 -

tiltcircle With Local Minima

The tiltcircle function has just one local minimum. Yet GlobalSearch (fmincon) stops at
several points. Does this mean fmincon makes an error?

The reason that fmincon stops at several boundary points is subtle. The tiltcircle function has
an infinite gradient on the boundary, as you can see from a one-dimensional calculation:

d fe_2___~X _ _
ﬁ16 X—W—iwatl)(l—‘.':.

y X
So there is a huge gradient normal to the boundary. This gradient overwhelms the small additional tilt
from the linear term. As far as fmincon can tell, boundary points are stationary points for the

constrained problem.

This behavior can arise whenever you have a function that has a square root.

See Also

More About

. “Find Global or Multiple Local Minima” on page 4-57
. “Isolated Global Minimum” on page 4-85
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This example shows how to fit a function to data using Lsqcurvefit together with MultiStart.
The end of the example shows the same solution using lsgnonlin.

Many fitting problems have multiple local solutions. MultiStart can help find the global solution,
meaning the best fit. This example first uses Lsqcurvefit because of its convenient syntax.

The model is
y = a+ bxysin(cxy + d),

where the input data is x = (xq, xp), and the parameters a, b, ¢, and d are the unknown model
coefficients.

Step 1. Create the objective function.

Write an anonymous function that takes a data matrix xdata with N rows and two columns, and
returns a response vector with N rows. The function also takes a coefficient matrix p, corresponding
to the coefficient vector (a, b, ¢, d).

fitfcn = @(p,xdata)p(l) + p(2)*xdata(:,1).*sin(p(3)*xdata(:,2)+p(4));
Step 2. Create the training data.

Create 200 data points and responses. Use the valuesa = — 3,b =1/4,¢ = 1/2,d = 1. Include
random noise in the response.

rng default % For reproducibility
N = 200; % Number of data points

preal = [-3,1/4,1/2,1]; % Real coefficients
xdata = 5*rand(N,2); % Data points
ydata = fitfcn(preal,xdata) + 0.1*randn(N,1); % Response data with noise

Step 3. Set bounds and initial point.

Set bounds for Lsqcurvefit. There is no reason for d to exceed m in absolute value, because the
sine function takes values in its full range over any interval of width 2m. Assume that the coefficient ¢
must be smaller than 20 in absolute value, because allowing a high frequency can cause unstable
responses or inaccurate convergence.

-Inf,-Inf,-20,-pil;

1b
ub Inf,Inf,20,pil;

= [
= [
Set the initial point arbitrarily to (5,5,5,0).

p0 = 5*ones(1,4); % Arbitrary initial point
p0(4) = 0; % Ensure the initial point satisfies the bounds

Step 4. Find the best local fit.
Fit the parameters to the data, starting at p0.

[xfitted,errorfitted] = lsqcurvefit(fitfcn,p0,xdata,ydata,lb,ub)

Local minimum possible.
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lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

xfitted = Ix4

-2.6149 -0.0238 6.0191 -1.6998

errorfitted = 28.2524

lsqgcurvefit finds a local solution that is not particularly close to the model parameter values (-
3,1/4,1/2,1).

Step 5. Set up the problem for MultiStart.
Create a problem structure so MultiStart can solve the same problem.

problem = createOptimProblem('lsqcurvefit', 'x0',p0, 'objective', fitfcn,...
'"lb',lb, 'ub',ub, 'xdata',xdata, 'ydata',ydata);

Step 6. Find a global solution.

Solve the fitting problem using MultiStart with 50 iterations. Plot the smallest error as the number
of MultiStart iterations.

ms = MultiStart('PlotFcns',@gsplotbestf);
[xmulti,errormulti] = run(ms,problem,50)

Best Function Value: 1.6464

Function value
— [
o o}
T T

=&
=
T

0 5 10 15 20 25 30 35 40 45 50
Local solver call
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MultiStart completed the runs from all start points.
All 50 local solver runs converged with a positive local solver exit flag.
xmulti = Ix4

-2.9852 -0.2472 -0.4968 -1.0438

errormulti = 1.6464

MultiStart finds a global solution near the parameter values (-3,-1/4,-1/2,-1). (This is equivalent to
a solution near preal = (-3,1/4,1/2,1), because changing the sign of all the coefficients except the
first gives the same numerical values of fitfcn.) The norm of the residual error decreases from
about 28 to about 1.6, a decrease of more than a factor of 10.

Formulate Problem for 1sqnonlin

For an alternative approach, use lsqnonlin as the fitting function. In this case, use the difference
between predicted values and actual data values as the objective function.

fitfcn2 = @(p)fitfcn(p,xdata)-ydata;
[xlsgnonlin,errorlsgnonlin] = lsgnonlin(fitfcn2,p0®,1b,ub)

Local minimum possible.

lsgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

xlsgnonlin = Ix4

-2.6149 -0.0238 6.0191 -1.6998

errorlsgnonlin = 28.2524

Starting from the same initial point p0, Lsgnonlin finds the same relatively poor solution as
lsqcurvefit.

Run MultiStart using lsgnonlin as the local solver.

problem2 = createOptimProblem('lsgnonlin', 'x0',p0, 'objective',fitfcn2, ...
"lb',1lb, 'ub',ub');
[xmultinonlin,errormultinonlin] = run(ms,problem2,50)



MultiStart Using Isqcurvefit or Isgnonlin

Best Function Value: 1.6464

Function value
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Local solver call

MultiStart completed the runs from all start points.

All 50 local solver runs converged with a positive local solver exit flag.

xmultinonlin = Ix4

-2.9852 -0.2472 -0.4968 -1.0438

errormultinonlin = 1.6464

Again, MultiStart finds a much better solution than the local solver alone.
See Also

More About

. “Visualize the Basins of Attraction” on page 4-24
. “Find Global or Multiple Local Minima” on page 4-57
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Parallel MultiStart

4-82

In this section...

“Steps for Parallel MultiStart” on page 4-82
“Speedup with Parallel Computing” on page 4-83

Steps for Parallel MultiStart

If you have a multicore processor or access to a processor network, you can use Parallel Computing
Toolbox™ functions with MultiStart. This example shows how to find multiple minima in parallel
for a problem, using a processor with two cores. The problem is the same as in “Multiple Local
Minima Via MultiStart” on page 4-59.

1

Write a function file to compute the objective:

function f = sawtoothxy(x,y)
[t r] = cart2pol(x,y); % change to polar coordinates

h = cos(2*t - 1/2)/2 + cos(t) + 2;

g = (sin(r) - sin(2*r)/2 + sin(3*r)/3 - sin(4*r)/4 + 4)
Krun2./(r+l);

f = g.*h;

end

Create the problem structure:

problem = createOptimProblem('fminunc',...
'objective',@(x)sawtoothxy(x(1),x(2)),...
'x0',[100,-50], 'options', ...
optimoptions(@fminunc, 'Algorithm', 'quasi-newton'));
Validate the problem structure by running it:

[x,fval] = fminunc(problem)

X =
8.4420 -110.2602

fval =
435.2573

Create a MultiStart object, and set the object to use parallel processing and iterative display:

ms = MultiStart('UseParallel',true, 'Display', 'iter');
Set up parallel processing:

parpool
Starting parpool using the 'local' profile ... connected to 4 workers.
ans =
Pool with properties:
Connected: true
NumWorkers: 4

Cluster: local
AttachedFiles: {}




Parallel MultiStart

IdleTimeout: 30 minute(s) (30 minutes remaining)
SpmdEnabled: true
6 Run the problem on 50 start points:

[x,fval,eflag,output,manymins] = run(ms,problem,50);
Running the local solvers in parallel.

Run Local Local Local Local First-order
Index exitflag f(x) # iter F-count optimality
17 2 3953 4 21 0.1626
16 0 1331 45 201 65.02
34 0 7271 54 201 520.9
33 2 8249 4 18 2.968
... Many iterations omitted ...
47 2 2740 5 21 0.0422
35 0 8501 48 201 424.8
50 0 1225 40 201 21.89

MultiStart completed some of the runs from the start points.

17 out of 50 local solver runs converged with a positive
local solver exit flag.

Notice that the run indexes look random. Parallel MultiStart runs its start points in an
unpredictable order.

Notice that MultiStart confirms parallel processing in the first line of output, which states:
“Running the local solvers in parallel.”
7 When finished, shut down the parallel environment:

delete(gcp)
Parallel pool using the 'local' profile is shutting down.

For an example of how to obtain better solutions to this problem, see “Example: Searching for a
Better Solution” on page 4-46. You can use parallel processing along with the techniques described in
that example.

Speedup with Parallel Computing

The results of MultiStart runs are stochastic. The timing of runs is stochastic, too. Nevertheless,
some clear trends are apparent in the following table. The data for the table came from one run at
each number of start points, on a machine with two cores.

Start Points Parallel Seconds Serial Seconds
50 3.6 34
100 4.9 5.7
200 8.3 10
500 16 23
1000 31 46

Parallel computing can be slower than serial when you use only a few start points. As the number of
start points increases, parallel computing becomes increasingly more efficient than serial.
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There are many factors that affect speedup (or slowdown) with parallel processing. For more
information, see “Improving Performance with Parallel Computing”.

See Also

More About

. “Multiple Local Minima Via MultiStart” on page 4-59
. “Isolated Global Minimum” on page 4-85
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Isolated Global Minimum

In this section...

“Difficult-To-Locate Global Minimum” on page 4-85

“Default Settings Cannot Find the Global Minimum — Add Bounds” on page 4-86
“GlobalSearch with Bounds and More Start Points” on page 4-87

“MultiStart with Bounds and Many Start Points” on page 4-87

“MultiStart Without Bounds, Widely Dispersed Start Points” on page 4-88
“MultiStart with a Regular Grid of Start Points” on page 4-88

“MultiStart with Regular Grid and Promising Start Points” on page 4-89

Difficult-To-Locate Global Minimum

Finding a start point in the basin of attraction of the global minimum can be difficult when the basin
is small or when you are unsure of the location of the minimum. To solve this type of problem you
can:

* Add sensible bounds

» Take a huge number of random start points

* Make a methodical grid of start points

* For an unconstrained problem, take widely dispersed random start points

This example shows these methods and some variants.

The function -sech(x) is nearly 0 for all |x| > 5, and -sech(0) = -1. The example is a two-dimensional
version of the sech function, with one minimum at [1, 1], the other at [1e5, -1e5]:

fix,y) = -10sech(|x - (1,1)]) - 20sech(.0003(|x - (1e5,-1e5)]) - 1.

f has a global minimum of -21 at (1e5,-1e5), and a local minimum of -11 at (1,1).
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4-86

1E|— _

filx.y])

Global Minimum

The minimum at (1e5,-1e5) shows as a narrow spike. The minimum at (1,1) does not show since it is
too narrow.

The following sections show various methods of searching for the global minimum. Some of the
methods are not successful on this problem. Nevertheless, you might find each method useful for
different problems.

Default Settings Cannot Find the Global Minimum — Add Bounds

GlobalSearch and MultiStart cannot find the global minimum using default global options, since
the default start point components are in the range (-9999,10001) for GlobalSearch and (-
1000,1000) for MultiStart.

With additional bounds of -1e6 and 1e6 in problem, GlobalSearch usually does not find the global
minimum:

x1 = [1;1];%x2 = [1e5;-1e5];

f = @(x)-10*sech(norm(x(:)-x1)) -20*sech((norm(x(:)-x2))*3e-4) -1;

opts = optimoptions(@fmincon, 'Algorithm', 'active-set');

problem = createOptimProblem('fmincon', 'x0',[0,0], 'objective',f,...
'lb',[-1e6;-1e6],'ub',[1le6;1e6], 'options', opts);

gs = GlobalSearch;

rng(14, 'twister') % for reproducibility

[xfinal, fval] = run(gs,problem)

GlobalSearch stopped because it analyzed all the trial points.
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A1l 32 local solver runs converged with a positive
local solver exit flag.

xfinal =
1.0000 1.0000

fval =
-11.0000

GlobalSearch with Bounds and More Start Points

To find the global minimum, you can search more points. This example uses 1e5 start points, and a
MaxTime of 300 s:

gs.NumTrialPoints = 1le5;
gs.MaxTime 300;
[xg, fvalg] run(gs,problem)

GlobalSearch stopped because maximum time is exceeded.

GlobalSearch called the local solver 2186 times before exceeding
the clock time limit (MaxTime = 300 seconds).

1943 local solver runs converged with a positive

local solver exit flag.

Xg =
1.0e+04 *
10.0000 -10.0000

fvalg =
-21.0000

In this case, GlobalSearch found the global minimum.

MultiStart with Bounds and Many Start Points

Alternatively, you can search using MultiStart with many start points. This example uses 1e5 start
points, and a MaxTime of 300 s:

ms = MultiStart(gs);
[xm,fvalm] = run(ms,problem,le5)

MultiStart stopped because maximum time was exceeded.
MultiStart called the local solver 17266 times before exceeding
the clock time limit (MaxTime = 300 seconds).

17266 local solver runs converged with a positive

local solver exit flag.

xm =
1.0000 1.0000

fvalm =
-11.0000

In this case, MultiStart failed to find the global minimum.
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MultiStart Without Bounds, Widely Dispersed Start Points

You can also use MultiStart to search an unbounded region to find the global minimum. Again, you
need many start points to have a good chance of finding the global minimum.

The first five lines of code generate 10,000 widely dispersed random start points using the method
described in “Widely Dispersed Points for Unconstrained Components” on page 4-45. newprob is a
problem structure using the fminunc local solver and no bounds:

rng(0, 'twister') % for reproducibility

u = rand(le4,1);
u=1./u;

u = exp(u) - exp(l);
s = rand(le4,1)*2*pi;

stpts = [u.*cos(s),u.*sin(s)];
startpts = CustomStartPointSet(stpts);

opts = optimoptions(@fminunc, 'Algorithm', 'quasi-newton');

newprob = createOptimProblem('fminunc', 'x0',[0;0], 'objective',f,...
'options',opts);

[xcust, fcust] = run(ms,newprob,startpts)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive
local solver exit flag.

Xcust =
1.0e+05 *

1.0000
-1.0000

fcust =
-21.0000

In this case, MultiStart found the global minimum.

MultiStart with a Regular Grid of Start Points

You can also use a grid of start points instead of random start points. To learn how to construct a
regular grid for more dimensions, or one that has small perturbations, see “Uniform Grid” on page 4-
44 or “Perturbed Grid” on page 4-45.

XX = -1leb6:1led4:1eb6;

[xxx,yyy]l = meshgrid(xx,xx);

z = [xxx(:),yyy(:)1;

bigstart = CustomStartPointSet(z);
[xgrid, fgrid] = run(ms,newprob,bigstart)

MultiStart completed the runs from all start points.

All 10000 local solver runs converged with a positive
local solver exit flag.

xgrid =
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1.0e+004 *

10.0000
-10.0000

fgrid =
-21.0000

In this case, MultiStart found the global minimum.

MultiStart with Regular Grid and Promising Start Points

Making a regular grid of start points, especially in high dimensions, can use an inordinate amount of
memory or time. You can filter the start points to run only those with small objective function value.

To perform this filtering most efficiently, write your objective function in a vectorized fashion. For
information, see “Write a Vectorized Function” on page 2-3 or “Vectorize the Objective and Constraint
Functions” on page 5-77. The following function handle computes a vector of objectives based on an
input matrix whose rows represent start points:

x1 = [1;1];%x2 = [1le5;-1e5];
g = @(x) -10*sech(sqrt((x(:,1)-x1(1)).72 + (x(:,2)-x1(2)).72))
-20*sech(sqrt((x(:,1)-x2(1)).”2 + (x(:,2)-x2(2)).72))-1;

Suppose you want to run the local solver only for points where the value is less than -2. Start with a
denser grid than in “MultiStart with a Regular Grid of Start Points” on page 4-88, then filter out all
the points with high function value:

XX = -1le6:1e3:1e6;

[xxx,yyyl = meshgrid(xx,xx);

z = [xxx(:),yyy(:)1;

idx = g(z) < -2; % index of promising start points

zz = z(idx,:);

smallstartset = CustomStartPointSet(zz);

opts = optimoptions(@fminunc, 'Algorithm', 'quasi-newton', 'Display’', 'off');

newprobg = createOptimProblem('fminunc', 'x0',[0,0],...
'objective',g, 'options',opts);
% row vector x0 since g expects rows

[xfew,ffew] = run(ms,newprobg,smallstartset)

MultiStart completed the runs from all start points.

A1l 2 local solver runs converged with a positive
local solver exit flag.

xfew =
100000 -100000

ffew =
-21

In this case, MultiStart found the global minimum. There are only two start points in
smallstartset, one of which is the global minimum.
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See Also

More About

. “Parallel MultiStart” on page 4-82

. “Visualize the Basins of Attraction” on page 4-24
. “Refine Start Points” on page 4-44
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* “What Is Direct Search?” on page 5-2

* “Optimize Using the GPS Algorithm” on page 5-3

* “Coding and Minimizing an Objective Function Using Pattern Search” on page 5-8
* “Constrained Minimization Using Pattern Search, Solver-Based” on page 5-12
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What Is Direct Search?

5-2

Direct search is a method for solving optimization problems that does not require any information
about the gradient of the objective function. Unlike more traditional optimization methods that use
information about the gradient or higher derivatives to search for an optimal point, a direct search
algorithm searches a set of points around the current point, looking for one where the value of the
objective function is lower than the value at the current point. You can use direct search to solve
problems for which the objective function is not differentiable, or is not even continuous.

Global Optimization Toolbox functions include three direct search algorithms called the generalized
pattern search (GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive
search (MADS) algorithm. All are pattern search algorithms that compute a sequence of points that
approach an optimal point. At each step, the algorithm searches a set of points, called a mesh, around
the current point—the point computed at the previous step of the algorithm. The mesh is formed by
adding the current point to a scalar multiple of a set of vectors called a pattern. If the pattern search
algorithm finds a point in the mesh that improves the objective function at the current point, the new
point becomes the current point at the next step of the algorithm.

The GPS algorithm uses fixed direction vectors. The GSS algorithm is identical to the GPS algorithm,
except when there are linear constraints, and when the current point is near a linear constraint
boundary. The MADS algorithm uses a random selection of vectors to define the mesh. For details,
see “Patterns” on page 5-22.

See Also

More About

. “Optimize Using the GPS Algorithm” on page 5-3
. “Pattern Search Terminology” on page 5-22

. “How Pattern Search Polling Works” on page 5-25
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Optimize Using the GPS Algorithm

In this section...

“Objective Function” on page 5-3

“Find the Minimum of the Function” on page 5-4

This example shows how to solve an optimization problem using the GPS algorithm, which is the
default for the patternsearch solver. The example uses the Optimize Live Editor task to complete
the optimization using a visual approach.

Objective Function

This example uses the objective function ps_example, which is included with Global Optimization
Toolbox software. View the code for the function by entering the following command.

type ps_example

This figure shows a plot of the function.

ps_example(x)

X(2) 4

Code for creating the figure
fsurf(@(x,y)reshape(ps_example([x(:),y(:)]),size(x)),...

[-6 2 -4 4], 'LineStyle', 'none', 'MeshDensity',300)
colormap 'jet'
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view(-26,43
xlabel('x(1)")
ylabel('x(2)")

title('ps\ _example(x)")

Find the Minimum of the Function

To find the minimum of ps_example using the Optimize Live Editor task, complete the following
steps.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

HOME .

e

n Mew
ot |Live Script

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select Task

> Optimize.
INSERT
— =
—— —
de Control | Task | Section Br
- -
CODE

DATA PREPROCESS

Gl

Clean Missing (I
Data

TAEBLES AND TIMET,

[==z]
3

==z]
Join Tables

OPTIMIZATION

M

Optimize




Optimize Using the GPS Algorithm

Optimize O 7

Minimize a function with or without constraints

= Specify problem type

. f .
-‘ 1_0 [ AW l|l II _Il ;]
Objective ; = :
Linear Quadratic Least squares Menlinear Monsmooth

Select an objective type to see example functions

|D Unconstrained | ‘E Lower bounds | ‘ﬂ Upper bounds | ‘D Linear inequality

Constraints || . , 1] 1 [ . 1]
|Z Linear equality | ‘ Second-order cnne| ‘ Monlinear | ‘ Intager

Select constraint types to see example formulas

Solver | fmincon - Constrained nonlinear minimization (recommended} \ e

= Select problem data

Objective function | From file v | |:E5ro'.f.rse...:| |:New._.:| (7]

Initial point (x0) | select ¥ |

} Specify solver options

~ Display progress

Text display | Final output v |
Plot [ | Current paint [ |Evaluation count | | Objective value and feasibility | | Objective value
| |Max constraint violation | | Step size [ | Optimality measure

3 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

4 In the new section above the task, enter the following code to define the initial point and
objective function.

x0 = [2.1 1.7];

fun = @ps_example;

To place these variables into the workspace, run the section by pressing Ctrl + Enter.

In the Specify problem type section of the task, click the Objective > Nonsmooth button.
Ensure that the selected solver is patternsearch.

In the Select problem data section of the task, select Objective function > Function handle
and then choose fun.

9 Select Initial point (x0) > x0.

10 In the Display progress section of the task, select the Best value and Mesh size plots.

coONOoO W
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Solver | patternsearch - Pattern search (recommended)

Select problem data

Objective function | Function handle ¥ | | fun ¥ | e

Initial paint (x0) [ %0 ¥ |

Specify solver options

Display progress

Text display | Final output v |

Plot Best value Mesh size | |Function count | | Best point

[ |Max constraint

11 To run the solver, click the options button : at the top right of the task window, and select Run
Section. The plots appear in a separate figure window and in the task output area.

e Best Function Value: -2

Functicn value
%]
T
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2 L I ' SLEE] i i i i
0 10 20 30 4n 50 &0
[teration
4 Current Mesh Size: 9.53674e-07
|
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[
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B
= 2 _ul I| [}
[15] | (A
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= | TR
.I L () I'._‘ A
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[teration

The upper plot shows the objective function value of the best point at each iteration. Typically, the

objective function values improve rapidly at the early iterations and then level off as they approach
the optimal value.
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The lower plot shows the mesh size at each iteration. The mesh size increases after each successful
iteration and decreases after each unsuccessful iteration. For details, see “How Pattern Search
Polling Works” on page 5-25.

The optimization stopped because the mesh size became smaller than the mesh size tolerance value,
defined by the MeshTolerance option. The minimum function value is approximately -2.

To see the solution and objective function value, look at the top of the task.

Optimize

solution |,| objectiveValue | = Minimize fun using patternsearch solver
The Optimize task puts the variables solution and objectiveValue in the workspace. View these
values by placing a new section below the task, and include this code.

disp(solution)
disp(objectiveValue)

Run the section by pressing Ctrl+Enter.
disp(solution)

-4.7124 -0.0000
disp(objectiveValue)

-2.0000

See Also
patternsearch | Optimize

More About

. “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65
. “How Pattern Search Polling Works” on page 5-25
. “Add Interactive Tasks to a Live Script”
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Coding and Minimizing an Objective Function Using Pattern
Search

This example shows how to create and minimize an objective function using pattern search.

Objective Function
For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple objective(x) = (4 - 2.1*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) + (-4 +
4*x(2)72)*x(2)72;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Code the Objective Function

Create a MATLAB file named simple objective.m containing the following code:
type simple objective

function y = simple objective(x)
%SIMPLE OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.
x1 x(1);

X2 x(2);
y = (4-2.1.%x1.724X1.74./3) . *X1."24X1. *X2+(-4+4 . *X2.72) . *x2.72;

Solvers such as patternsearch accept a single input x, where x has as many elements as the
number of variables in the problem. The objective function computes the scalar value of the objective
function and returns it in its single output argument y.

Minimize Using patternsearch

Specify the objective function as a function handle.

ObjectiveFunction = @simple objective;

Specify an initial point for the solver.

x0 = [0.5 0.5]; % Starting point

Call the solver, requesting the optimal point x and the function value at the optimal point fval.
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

X = 1x2

-0.0898 0.7127

fval = -1.0316
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Minimize Using Additional Arguments

Sometimes your objective function has extra arguments that act as constants during the optimization.
For example, in simple objective, you might want to specify the constants 4, 2.1, and 4 as
variable parameters to create a family of objective functions.

Rewrite simple objective to take three additional parameters (pl, p2, and p3) that act as
constants during the optimization (they are not varied as part of the minimization). To implement the
objective function calculation, the MATLAB file parameterized objective.m contains the
following code:

type parameterized objective

function y = parameterized objective(x,pl,p2,p3)
%SPARAMETERIZED OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.
x1 x(1);

X2 x(2);
y = (pl-p2.*x1.72+x1.74./3) . *x1.72+x1.*X2+(-p3+p3.*x2.72) . *x2.72;

patternsearch calls the objective function with just one argument x, but the parameterized
objective function has four arguments: x, p1, p2, and p3. Use an anonymous function to capture the
values of the additional arguments p1, p2, and p3. Create a function handle ObjectiveFunction to
an anonymous function that takes one input x, but calls parameterized objective with x, p1, p2,
and p3. When you create the function handle ObjectiveFunction, the variables p1, p2, and p3
have values that are stored in the anonymous function. For details, see “Passing Extra Parameters”.

pl = 4; p2 = 2.1; p3 = 4; % Define constant values
ObjectiveFunction = @(x) parameterized objective(x,pl,p2,p3);
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.

X = 1Ix2

-0.0898 0.7127

fval = -1.0316
Vectorize the Objective Function

By default, patternsearch passes in one point at a time to the objective function. Sometimes, you
can speed the solver by vectorizing the objective function to take a set of points and return a set of
function values.

For the solver to evaluate a set of five points in one call to the objective function, for example, the
solver calls the objective on a matrix of size 5-by-2 (where 2 is the number of variables). For details,
see “Vectorize the Objective and Constraint Functions” on page 5-77.

To vectorize parameterized objective, use the following code:
type vectorized objective

function y = vectorized objective(x,pl,p2,p3)
SVECTORIZED OBJECTIVE Objective function for PATTERNSEARCH solver

5-9
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% Copyright 2004-2018 The MathWorks, Inc.

x1 x(:,1); % First column of x
X2 x(:,2);
y = (pl - p2.*x1.72 + x1.74./3).*x1.72 + x1.*x2 + (-p3 + p3.*x2.72).*x2.72;

This vectorized version of the objective function takes a matrix x with an arbitrary number of points
(the rows of x) and returns a column vector y whose length is the number of rows of x.

To take advantage of the vectorized objective function, set the UseVectorized option to true and
the UseCompletePoll option to true. patternsearch requires both of these options to compute
in a vectorized manner.

options = optimoptions(@patternsearch, 'UseVectorized',true, 'UseCompletePoll’,true);

Specify the objective function and call patternsearch, including the options argument. Use
tic/toc to evaluate the solution time.

ObjectiveFunction = @(x) vectorized objective(x,4,2.1,4);

tic

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[1,[],[1,[]1,[1,[],options)
Optimization terminated: mesh size less than options.MeshTolerance.

X = 1x2

-0.0898 0.7127

fval = -1.0316

toc

Elapsed time is 0.027503 seconds.

Evaluate the nonvectorized solution time for comparison.

tic
[x,fval] = patternsearch(ObjectiveFunction,x0)

Optimization terminated: mesh size less than options.MeshTolerance.
X = 1Ix2

-0.0898 0.7127

fval = -1.0316
toc

Elapsed time is 0.027502 seconds.

In this case, the vectorization does not have a significant impact on the solution time.
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References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also

More About

. “Passing Extra Parameters”
. “Vectorize the Objective and Constraint Functions” on page 5-77
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Constrained Minimization Using Pattern Search, Solver-Based

5-12

This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using pattern search. For a problem-based version of this example, see “Constrained
Minimization Using Pattern Search, Problem-Based” on page 6-4.

Constrained Minimization Problem
For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple objective(x) = (4 - 2.1*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) + (-4 +
4*x(2)"2)*x(2)"2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

Additionally, the problem has nonlinear constraints and bounds.

x(1)*x(2) + x(1) - x(2) + 1.5 <= 0 (nonlinear constraint)
10 - x(1)*x(2) <=0 (nonlinear constraint)
0 <= x(1) <=1 (bound)
0 <= x(2) <= 13 (bound)

Code the Objective Function

Create a MATLAB file named simple objective.m containing the following code:
type simple objective

function y = simple objective(x)
%SIMPLE OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.
x1 x(1);

X2 x(2);
y = (4-2.1.*%x1.72+x1.74./3) . *x1."2+X1. *X2+(-4+4.*x2.72) . ¥*x2.72;

Solvers such as patternsearch accept a single input x, where x has as many elements as the
number of variables in the problem. The objective function computes the scalar value of the objective
function and returns it in its single output argument y.

Coding the Constraint Function
Create a MATLAB file named simple constraint.m containing the following code:

type simple constraint

function [c, ceq] = simple constraint(x)
%SIMPLE CONSTRAINT Nonlinear inequality constraints.

% Copyright 2005-2007 The MathWorks, Inc.

c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 101;

% No nonlinear equality constraints:
ceq = [];
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The constraint function computes the values of all the inequality and equality constraints and returns
the vectors c and ceq, respectively. The value of ¢ represents nonlinear inequality constraints that
the solver attempts to make less than or equal to zero. The value of ceq represents nonlinear equality
constraints that the solver attempts to make equal to zero. This example has no nonlinear equality
constraints, so ceq = []. For details, see “Nonlinear Constraints”.

Minimize Using patternsearch

Specify the objective function as a function handle.
ObjectiveFunction = @simple objective;
Specify the problem bounds.

b
ub

[0 0];
[1 13];

ower bounds
pper bounds

% L
% U
Specify the nonlinear constraint function as a function handle.
ConstraintFunction = @simple constraint;

Specify an initial point for the solver.

x0 = [0.5 0.5]; % Starting point

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

[x,fval] = patternsearch(ObjectiveFunction,x0,[1,[1,[1,[1,lb,ub,
ConstraintFunction)

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

X = 1x2

0.8122 12.3122

fval = 9.1324e+04
Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
psplotbestf plots the best objective function value at every iteration, and the plot function
psplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter"'.

options = optimoptions(@patternsearch, 'PlotFcn', {@psplotbestf,@psplotmaxconstr},
'‘Display', 'iter');

Run the solver, including the options argument.

[x,fval] = patternsearch(ObjectiveFunction,x0,[],[]1,[]1,[]1,1b,ub,
ConstraintFunction,options)

Max
Iter Func-count f(x) Constraint MeshSize Method
0 1 0.373958 9.75 0.9086
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1 18 113581 1.617e-10 0.001 Increase penalty
2 148 92267 0 le-05 Increase penalty
3 374 91333.2 0 le-07 Increase penalty
4 639 91324 0 le-09 Increase penalty

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

w1n® Best Function Value: 91324
10 F
Illl - - -
o |
™
-
=
g 27
=
s |
L
D i i i i i i i i
0 0.5 1 1.5 2 25 3 2.5 4
Iteration

. Max Constraint Violation: 0

Max Constraint Wiclation
(4

Iteration

X = 1x2

0.8122 12.3122

fval = 9.1324e+04

Nonlinear constraints cause patternsearch to solve many subproblems at each iteration. As shown
in both the plots and the iterative display, the solution process has few iterations. However, the
Func-count column in the iterative display shows many function evaluations per iteration. Both the
plots and the iterative display show that the initial point is infeasible, and that the objective function
is low at the initial point. During the solution process, the objective function value initially increases,
then decreases to its final value.
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References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also

More About

. “Write Constraints” on page 2-6
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Effects of Pattern Search Options
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This example shows the effects of some options for pattern search. The options include plotting,
stopping criteria, and other algorithmic controls for speeding a solution.

Set Up a Problem for Pattern Search

The problem to minimize is a quadratic function of six variables subject to linear equality and
inequality constraints. The objective function, lincontest7, is included with Global Optimization
Toolbox.

type lincontest?

function y = lincontest7(x);

%SLINCONTEST7 objective function.

% Yy = LINCONTEST7(X) evaluates y for the input X. Make sure that x is a column
% vector, whereas objective function gets a row vector.

% Copyright 2003-2004 The MathWorks, Inc.

X =X';
%sDefine a quadratic problem in terms of H and f (From web unknown source)
H=[36 17 19 12 8 15; 17 33 18 11 7 14; 19 18 43 13 8 16;

12 11 13 18 6 11; 8 7 8 6 9 8; 15 14 16 11 8 29];

f=1201521 18 29 24 1°';

y = 0.5%x"*H*x + f'*x;
Specify the function handle @lincontest7 as the objective function.
objectiveFcn = @lincontest7;
The objective function accepts a row vector of length six. Specify an initial point for the optimization.
x0=[210910];

Create linear constraint matrices representing the constraints Aineq*x <= Bineq and Aegq*x =
Begq. For details, see “Linear Constraints”.

[-87 3 -4901;

[71;

Aeq =[718333;505158;267118;100000];
Beq = [84 62 65 1];

Run the patternsearch solver, and note the number of iterations and function evaluations required
to reach the solution.

[X1,Fval,Exitflag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq);

Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations is: %d\n', Output.iterations);
The number of iterations is: 248

fprintf('The number of function evaluations is: %d\n', Output.funccount);
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The number of function evaluations is: 1920
fprintf('The best function value found is: %g\n', Fval);
The best function value found is: 2189.03

Add Visualization

Monitor the optimization process by specifying options that select two plot functions. The plot
function psplotbestf plots the best objective function value at every iteration, and the plot function
psplotfuncount plots the number of times the objective function is evaluated at each iteration. Set
these two plot functions in a cell array.

opts = optimoptions(@patternsearch, 'PlotFcn',{@psplotbestf,@splotfuncount});

Run the patternsearch solver, including the opts argument. Because the problem has no upper or
lower bound constraints and no nonlinear constraints, pass empty arrays ([ ]) for the seventh, eighth,
and ninth arguments.

[X1,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,
Aeq,Beq, [1,[1,[],0pts);

Optimization terminated: mesh size less than options.MeshTolerance.

Best Function Value: 2189.03
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Mesh Options

Pattern search involves evaluating the objective function at points in a mesh. The size of the mesh can
influence the speed of the solution. You can control the size of the mesh using options.
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Initial Mesh Size

The mesh at each iteration is the span of a set of search directions that are added to the current
point, scaled by the current mesh size. The solver starts with an initial mesh size of 1 by default. To
start the initial mesh size at 1/2, set the InitialMeshSize option.

opts = optimoptions(opts,'InitialMeshSize',1/2);
Mesh Scaling

You can scale the mesh to improve the minimization of a poorly scaled optimization problem. Scaling
rotates the pattern by some degree and scales along the search directions. The ScaleMesh option is
on (true) by default, but you can turn it off if the problem is well scaled. In general, if the problem is
poorly scaled, setting this option to true can reduce the number of function evaluations. For this
problem, set ScaleMesh to false, because Lincontest7 is a well-scaled objective function.

opts = optimoptions(opts, 'ScaleMesh', false);
Mesh Accelerator

Direct search methods require many function evaluations compared to derivative-based optimization
methods. The pattern search algorithm can quickly find the neighborhood of an optimum point, but
can be slow in detecting the minimum itself. The patternsearch solver can reduce the number of
function evaluations by using an accelerator. When the accelerator is on (opts.AccelerateMesh =
true), the solver contracts the mesh size rapidly after reaching a minimum mesh size. This option is
recommended only for smooth problems; in other types of problems, you can lose some accuracy. The
AccelerateMesh option is off (false) by default. For this problem, set AccelerateMesh to true
because the objective function is smooth.

opts = optimoptions(opts, 'AccelerateMesh’',true);
Run the patternsearch solver.

[X2,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,
Aeq,Beq, [1,[1,[]1,0pts);

Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 2189.03
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fprintf('The number of iterations is: %d\n', Output.iterations);

The number of iterations is: 197

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 1302

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.03

The mesh option settings reduce the number of iterations and the number of function evaluations,
and with no apparent loss of accuracy.

Stopping Criteria and Tolerances

MeshTolerance is a tolerance on the mesh size. If the mesh size is less than MeshTolerance, the
solver stops. StepTolerance is the minimum tolerance on the change in the current point to the
next point. FunctionTolerance is the minimum tolerance on the change in the function value from
the current point to the next point.

Set the MeshTolerance to le-7, which is ten times smaller than the default value. This setting can
increase the number of function evaluations and iterations, and can lead to a more accurate solution.

opts.MeshTolerance = le-7;
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Search Methods in Pattern Search

The pattern search algorithm can use an additional search method at every iteration, based on the
value of the SearchFcn option. When you specify a search method using SearchFcn,
patternsearch performs the specified search first, before the mesh search. If the search method is
successful, patternsearch skips the mesh search, commonly called the poll function, for that
iteration. If the search method is unsuccessful in improving the current point, patternsearch
performs the mesh search.

You can specify different search methods for SearchFcn, including searchga and
searchneldermead, which are optimization algorithms. Use these two search methods only for the
first iteration, which is the default setting. Using either of these methods at every iteration might not
improve the results and can be computationally expensive. However, you can use the searchlhs
method, which generates Latin hypercube points, at every iteration or possibly every 10 iterations.

Other choices for search methods include poll methods such as positive basis N+1 or positive basis
2N. A recommended strategy is to use positive basis N+1 (which requires at most N+1 points to
create a pattern) as a search method and positive basis 2N (which requires 2N points to create a
pattern) as a poll method.

Update the options structure to use positivebasisnpl as the search method. Because positive
basis 2N is the default for the Pol1Fcn option, do not set that option.

opts.SearchFcn = @positivebasisnpl;
Run the patternsearch solver.

[X5,Fval,ExitFlag,Output] = patternsearch(objectiveFcn,x0,Aineq,Bineq,Aeq,Beq,
[1,[1,[1,0pts);

Optimization terminated: mesh size less than options.MeshTolerance.



Effects of Pattern Search Options

Best Function Value: 2189.03
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fprintf('The number of iterations is: %d\n', Output.iterations);

The number of iterations is: 63

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 788

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.03

The total number of iterations and function evaluations decreases, even though the mesh tolerance is
smaller than its previous value and is the stopping criterion that halts the solver.

See Also

More About

. “Set Mesh Options” on page 5-60
. “Pattern Search Options” on page 15-7
. “Custom Plot Function” on page 5-43
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In this section...

“Patterns” on page 5-22
“Meshes” on page 5-22
“Polling” on page 5-23

“Expanding and Contracting” on page 5-23

Patterns

A pattern is a set of vectors {v;} that the pattern search algorithm uses to determine which points to
search at each iteration. The set {v;} is defined by the number of independent variables in the
objective function, N, and the positive basis set. Two commonly used positive basis sets in pattern
search algorithms are the maximal basis, with 2N vectors, and the minimal basis, with N+1 vectors.

With GPS, the collection of vectors that form the pattern are fixed-direction vectors. For example, if
there are three independent variables in the optimization problem, the default for a 2N positive basis
consists of the following pattern vectors:

vi=[100] vu=[010] v3=[001]
va=[-100]vs=[0—-10]vg=[00 —1]

An N+1 positive basis consists of the following default pattern vectors.

vi=[100] wv=[010]vy=[001]
vi=1[-1-1-1]

With GSS, the pattern is identical to the GPS pattern, except when there are linear constraints and
the current point is near a constraint boundary. For a description of the way in which GSS forms a
pattern with linear constraints, see Kolda, Lewis, and Torczon [1]. The GSS algorithm is more
efficient than the GPS algorithm when you have linear constraints. For an example showing the
efficiency gain, see “Compare the Efficiency of Poll Options” on page 5-55.

With MADS, the collection of vectors that form the pattern are randomly selected by the algorithm.
Depending on the poll method choice, the number of vectors selected will be 2N or N+1. As in GPS,
2N vectors consist of N vectors and their N negatives, while N+1 vectors consist of N vectors and
one that is the negative of the sum of the others.

References
[1] Kolda, Tamara G., Robert Michael Lewis, and Virginia Torczon. “A generating set direct search

augmented Lagrangian algorithm for optimization with a combination of general and linear
constraints.” Technical Report SAND2006-5315, Sandia National Laboratories, August 2006.

Meshes

At each step, patternsearch searches a set of points, called a mesh, for a point that improves the
objective function. patternsearch forms the mesh by
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1 Generating a set of vectors {d;} by multiplying each pattern vector v; by a scalar A™. A™ is called
the mesh size.

2 Adding the {d;} to the current point—the point with the best objective function value found at the
previous step.

For example, using the GPS algorithm. suppose that:

* The current pointis [1.6 3.4].
* The pattern consists of the vectors

v1 =[1 0]
v = [0 1]
vy =[-1 0]
vg =0 —1]

e The current mesh size A™ is 4.

The algorithm multiplies the pattern vectors by 4 and adds them to the current point to obtain the
following mesh.

[1.6 3.4] + 4*[1 0] = [5.6 3.4]
[1.6 3.4] + 4*%[0 1] = [1.6 7.4]
[1.6 3.4] + 4*[-1 0] = [-2.4 3.4]
[1.6 3.4] + 4*[0 -1] = [1.6 -0.6]

The pattern vector that produces a mesh point is called its direction.

Polling

At each step, the algorithm polls the points in the current mesh by computing their objective function
values. When the Complete poll option has the (default) setting Off, the algorithm stops polling the
mesh points as soon as it finds a point whose objective function value is less than that of the current
point. If this occurs, the poll is called successful and the point it finds becomes the current point at
the next iteration.

The algorithm only computes the mesh points and their objective function values up to the point at
which it stops the poll. If the algorithm fails to find a point that improves the objective function, the
poll is called unsuccessful and the current point stays the same at the next iteration.

When the Complete poll option has the setting On, the algorithm computes the objective function
values at all mesh points. The algorithm then compares the mesh point with the smallest objective

function value to the current point. If that mesh point has a smaller value than the current point, the
poll is successful.

Expanding and Contracting

After polling, the algorithm changes the value of the mesh size A™. The default is to multiply A™ by 2
after a successful poll, and by 0.5 after an unsuccessful poll.
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See Also

More About

. “How Pattern Search Polling Works” on page 5-25
. “Searching and Polling” on page 5-33
. “Effects of Pattern Search Options” on page 5-16
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How Pattern Search Polling Works

In this section...

“Context” on page 5-25

“Successful Polls” on page 5-25

“An Unsuccessful Poll” on page 5-27

“Successful and Unsuccessful Polls in MADS” on page 5-28
“Displaying the Results at Each Iteration” on page 5-29
“More Iterations” on page 5-29

“Poll Method” on page 5-30

“Complete Poll” on page 5-31

“Stopping Conditions for the Pattern Search” on page 5-31

“Robustness of Pattern Search” on page 5-32

Context

patternsearch finds a sequence of points, x0, x1, x2, ..., that approach an optimal point. The value
of the objective function either decreases or remains the same from each point in the sequence to the
next. This section explains how pattern search works for the function described in “Optimize Using
the GPS Algorithm” on page 5-3.

To simplify the explanation, this section describes how the generalized pattern search (GPS) works
using the default maximal positive basis of 2N, with the ScaleMesh option set to false.

This section does not show how the patternsearch algorithm works with bounds or linear
constraints. For bounds and linear constraints, patternsearch modifies poll points to be feasible at
every iteration, meaning to satisfy all bounds and linear constraints.

This section does not encompass nonlinear constraints. To understand how patternsearch works
with nonlinear constraints, see “Nonlinear Constraint Solver Algorithm” on page 5-41.

Successful Polls
The pattern search begins at the initial point x0 that you provide. In this example, x0 = [2.1 1.7].
Iteration 1

At the first iteration, the mesh size is 1 and the GPS algorithm adds the pattern vectors to the initial
point X0 = [2.1 1.7] to compute the following mesh points:

[10] +x0=1[3.11.7]
[0 1] + x0 = [2.1 2.7]
[-1 0] + x0 =[1.1 1.7]
[0 -1] + x0 = [2.1 0.7]

The algorithm computes the objective function at the mesh points in the order shown above. The
following figure shows the value of ps_example at the initial point and mesh points.
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Ciojective Function Values at Initial Point and Mesh Points
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The algorithm polls the mesh points by computing their objective function values until it finds one
whose value is smaller than 4.6347, the value at x0. In this case, the first such point it finds is
[1.1 1.7], at which the value of the objective function is 4.5146, so the poll at iteration 1 is
successful. The algorithm sets the next point in the sequence equal to

x1 = 1[1.11.7]

Note By default, the GPS pattern search algorithm stops the current iteration as soon as it finds a
mesh point whose fitness value is smaller than that of the current point. Consequently, the algorithm
might not poll all the mesh points. You can make the algorithm poll all the mesh points by setting the
UseCompletePoll option to true.

Iteration 2

After a successful poll, the algorithm multiplies the current mesh size by 2, the default value of the
MeshExpansionFactor options. Because the initial mesh size is 1, at the second iteration the mesh
size is 2. The mesh at iteration 2 contains the following points:

2*¥[1 0] + x1 = [3.1 1.7]
2*¥[0 1] + x1 = [1.1 3.7]
2*¥[-1 0] + x1 = [-0.9 1.7]
2*¥[0 -1] + x1 = [1.1 -0.3]

The following figure shows the point x1 and the mesh points, together with the corresponding values
of ps_example.
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Cibjective Function Vakues at x1 and Mesh Points
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The algorithm polls the mesh points until it finds one whose value is smaller than 4.5146, the value at
x1. The first such point it finds is [-0.9 1.7], at which the value of the objective function is 3.25,
so the poll at iteration 2 is again successful. The algorithm sets the second point in the sequence
equal to

x2 = [-0.9 1.7]

Because the poll is successful, the algorithm multiplies the current mesh size by 2 to get a mesh size
of 4 at the third iteration.

An Unsuccessful Poll

By the fourth iteration, the current point is

x3 = [-4.9 1.7]

and the mesh size is 8, so the mesh consists of the points

8*[1 0] + x3 = [3.1 1.7]
8*[0 1] + x3 = [-4.9 9.7]
8*[-1 0] + x3 = [-12.9 1.7]
8*[0 -1] + x3 = [-4.9 -1.3]

The following figure shows the mesh points and their objective function values.
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Ciojective Function Vakues at 3 and Mesh Points
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At this iteration, none of the mesh points has a smaller objective function value than the value at x3,
so the poll is unsuccessful. In this case, the algorithm does not change the current point at the next
iteration. That is,

x4 = X3;

At the next iteration, the algorithm multiplies the current mesh size by 0.5, the default value of the
MeshContractionFactor option, so that the mesh size at the next iteration is 4. The algorithm then
polls with a smaller mesh size.

Successful and Unsuccessful Polls in MADS

Setting the Pol1Method option to 'MADSPositiveBasis2N' or 'MADSPositiveBasisNpl'
causes patternsearch to use both a different poll type and to react to polling differently than the
other polling algorithms.

A MADS poll uses newly generated pseudorandom mesh vectors at each iteration. The vectors are
randomly shuffled components from the columns of a random lower-triangular matrix. The
components of the matrix have integer sizes up to 1/y/mesh size. In the poll, the mesh vectors are
multiplied by the mesh size, so the poll points can be up to y/mesh size from the current point.

Unsuccessful polls contract the mesh by a factor of 4, ignoring the MeshContractionFactor
option. Similarly, successful polls expand the mesh by a factor of 4, ignoring the
MeshExpansionFactor option. The maximum mesh size is 1, despite any setting of the
MaxMeshSize option.

In addition, when there is a successful poll, patternsearch starts at the successful point and polls
again. This extra poll uses the same mesh vectors, expanded by a factor of 4 while staying below size
1. The extra poll looks again along the same directions that were just successful.
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Displaying the Results at Each Iteration

You can display the results of the pattern search at each iteration by setting the Display option to
"iter'. This enables you to evaluate the progress of the pattern search and to make changes to
options if necessary.

With this setting, the pattern search displays information about each iteration at the command line.
The first four iterations are

Iter f-count f(x) MeshSize Method
0 1 4.63474 1
1 4 4.51464 2 Successful Poll
2 7 3.25 4 Successful Poll
3 10 -0.264905 8 Successful Poll
4 14 -0.264905 4 Refine Mesh

The entry Successful Poll below Method indicates that the current iteration was successful. For
example, the poll at iteration 2 is successful. As a result, the objective function value of the point
computed at iteration 2, displayed below f (x), is less than the value at iteration 1.

At iteration 4, the entry Refine Mesh tells you that the poll is unsuccessful. As a result, the function
value at iteration 4 remains unchanged from iteration 3.

By default, the pattern search doubles the mesh size after each successful poll and halves it after
each unsuccessful poll.

More Iterations

The pattern search performs 60 iterations before stopping. The following plot shows the points in the
sequence computed in the first 13 iterations of the pattern search.

Points at First 13 lerations of Pattem Search
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The numbers below the points indicate the first iteration at which the algorithm finds the point. The
plot only shows iteration numbers corresponding to successful polls, because the best point doesn't
change after an unsuccessful poll. For example, the best point at iterations 4 and 5 is the same as at
iteration 3.

Poll Method

At each iteration, the pattern search polls the points in the current mesh—that is, it computes the
objective function at the mesh points to see if there is one whose function value is less than the
function value at the current point. “How Pattern Search Polling Works” on page 5-25 provides an
example of polling. You can specify the pattern that defines the mesh by the Pol1lMethod option. The
default pattern, 'GPSPositiveBasis2N', consists of the following 2N directions, where N is the
number of independent variables for the objective function.

[100..0]
[010..0]

[000...1]

[-100...0]
[0-10...0]
[000...-1].

For example, if the objective function has three independent variables, the GPS Positive basis
2N, consists of the following six vectors.

[100]
[010]
[001]
[-100]
[0-10]
[00-1].

Alternatively, you can set the Pol1Method option to 'GPSPositiveBasisNpl', the pattern
consisting of the following N + 1 directions.

[100..0]
[010..0]

[000..1]
[-1-1-1..-1].

For example, if objective function has three independent variables, the 'GPSPositiveBasisNpl'
consists of the following four vectors.

[100]
[010]
[001]
[-1-1-1].

A pattern search will sometimes run faster using 'GPSPositiveBasisNpl' rather than the
'GPSPositiveBasis2N' as the Pol1lMethod, because the algorithm searches fewer points at each
iteration. Although not being addressed in this example, the same is true when using the
'"MADSPositiveBasisNpl' over the 'MADSPositiveBasis2N', and similarly for GSS. For
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example, if you run a pattern search on the linearly constrained example in “Constrained
Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65, the algorithm
performs 1588 function evaluations with 'GPSPositiveBasis2N', the default Pol1lMethod, but
only 877 function evaluations using 'GPSPositiveBasisNpl'. For more detail, see “Compare the
Efficiency of Poll Options” on page 5-55.

However, if the objective function has many local minima, using 'GPSPositiveBasis2N' as the
PollMethod might avoid finding a local minimum that is not the global minimum, because the search
explores more points around the current point at each iteration.

Complete Poll

By default, if the pattern search finds a mesh point that improves the value of the objective function,
it stops the poll and sets that point as the current point for the next iteration. When this occurs, some
mesh points might not get polled. Some of these unpolled points might have an objective function
value that is even lower than the first one the pattern search finds.

For problems in which there are several local minima, it is sometimes preferable to make the pattern
search poll all the mesh points at each iteration and choose the one with the best objective function
value. This enables the pattern search to explore more points at each iteration and thereby
potentially avoid a local minimum that is not the global minimum. Have the pattern search poll the
entire mesh setting the UseCompletePoll option to true.

Stopping Conditions for the Pattern Search

The algorithm stops when any of the following conditions occurs:

* The mesh size is less than the MeshTolerance option.

* The number of iterations performed by the algorithm reaches the value of the MaxIterations
option.

* The total number of objective function evaluations performed by the algorithm reaches the value
of the MaxFunctionEvaluations option.

* The time, in seconds, the algorithm runs until it reaches the value of the MaxTime option.

» After a successful poll, the distance between the point found in the previous two iterations and the
mesh size are both less than the StepTolerance option.

» After a successful poll, the change in the objective function in the previous two iterations is less
than the FunctionTolerance option and the mesh size is less than the StepTolerance option.

The ConstraintTolerance option is not used as stopping criterion. It determines the feasibility
with respect to nonlinear constraints.

The MADS algorithm uses an additional parameter called the poll parameter, A,, in the mesh size
stopping criterion:

N,/Ap, for positive basis N + 1 poll

A
P JA,  for positive basis 2N poll,

where A, is the mesh size. The MADS stopping criterion is:

A, < MeshTolerance.
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Robustness of Pattern Search

The pattern search algorithm is robust in relation to objective function failures. This means
patternsearch tolerates function evaluations resulting in NaN, Inf, or complex values. When the
objective function at the initial point x0 is a real, finite value, patternsearch treats poll point
failures as if the objective function values are large, and ignores them.

For example, if all points in a poll evaluate to NaN, patternsearch considers the poll unsuccessful,
shrinks the mesh, and reevaluates. If even one point in a poll evaluates to a smaller value than any
seen yet, patternsearch considers the poll successful, and expands the mesh.

See Also

More About

. “Optimize Using the GPS Algorithm” on page 5-3

. “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65
. “Vectorize the Objective and Constraint Functions” on page 5-77

. “Search and Poll” on page 5-38
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Searching and Polling

In this section...

“Definition of Search” on page 5-33

“How to Use a Search Method” on page 5-34
“Search Types” on page 5-35

“When to Use Search” on page 5-36

Definition of Search

In patternsearch, a search is an algorithm that runs before a poll. The search attempts to locate a
better point than the current point. (Better means one with lower objective function value.) If the
search finds a better point, the better point becomes the current point, and no polling is done at that
iteration. If the search does not find a better point, patternsearch performs a poll.

By default, patternsearch does not use search. To search, see “How to Use a Search Method” on
page 5-34.

The figure “patternsearch With a Search Method” on page 5-34 contains a flow chart of direct
search including using a search method.
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patternsearch With a Search Method

Iteration limit applies to all built-in search methods except those that are poll methods. If you select
an iteration limit for the search method, the search is enabled until the iteration limit is reached.
Afterward, patternsearch stops searching and only polls.

How to Use a Search Method
To use search in patternsearch:

* Inthe Optimize Live Editor task, select a search function in Specify solver options >
Algorithm settings > Search function.
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At the command line, create options with a search method using optimoptions. For example, to
use Latin hypercube search:

opts = optimoptions('patternsearch', 'SearchFcn',@searchlhs);

For more information, including a list of all built-in search methods, consult the patternsearch
function reference page, and the “Search Options” on page 15-12 section of the options
reference.

You can write your own search method. Use the syntax described in “Structure of the Search
Function” on page 15-14. To use your search method in a pattern search, give its function handle as
the Custom Function (SearchFcn) option.

Search Types

Poll methods — You can use any poll method as a search algorithm. patternsearch conducts one
poll step as a search. For this type of search to be beneficial, your search type should be different
from your poll type. (patternsearch does not search if the selected search method is the same
as the poll type.) Therefore, use a MADS search with a GSS or GPS poll, or use a GSS or GPS
search with a MADS poll.

fminsearch, also called Nelder-Mead — fminsearch is for unconstrained problems only.
fminsearch runs to its natural stopping criteria; it does not take just one step. Therefore, use
fminsearch for just one iteration. This is the default setting. To change settings, see “Search
Options” on page 15-12.

ga — ga runs to its natural stopping criteria; it does not take just one step. Therefore, use ga for
just one iteration. This is the default setting. To change settings, see “Search Options” on page 15-
12.

Latin hypercube search — Described in “Search Options” on page 15-12. By default, searches
15n points, where n is the number of variables, and only searches during the first iteration. To
change settings, see “Search Options” on page 15-12.
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When to Use Search

There are two main reasons to use a search method:

» To speed an optimization (see “Search Methods for Increased Speed” on page 5-36)

* To obtain a better local solution, or to obtain a global solution on page 1-25 (see “Search Methods
for Better Solutions” on page 5-36)

Search Methods for Increased Speed

Generally, you do not know beforehand whether a search method speeds an optimization or not. So
try a search method when:

* You are performing repeated optimizations on similar problems, or on the same problem with
different parameters.
* You can experiment with different search methods to find a lower solution time.

Search does not always speed an optimization. For one example where it does, see “Search and Poll”
on page 5-38.

Search Methods for Better Solutions

Since search methods run before poll methods, using search can be equivalent to choosing a different
starting point for your optimization. This comment holds for the Nelder-Mead, ga, and Latin
hypercube search methods, all of which, by default, run once at the beginning of an optimization. ga
and Latin hypercube searches are stochastic, and can search through several basins of attraction on
page 1-26.

See Also

More About

. “Search and Poll” on page 5-38

. “Polling Types” on page 5-53

. “Setting Solver Tolerances” on page 5-37
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Setting Solver Tolerances

Tolerance refers to how small a parameter, such a mesh size, can become before the search is halted
or changed in some way. You can specify the value of the following tolerances using optimoptions
or the Optimize Live Editor task.

* MeshTolerance — When the current mesh size is less than the value of MeshTolerance, the
algorithm halts.

* StepTolerance — After a successful poll, if the distance from the previous best point to the
current best point is less than the value of StepTolerance, the algorithm halts.

* FunctionTolerance — After a successful poll, if the difference between the function value at the
previous best point and function value at the current best point is less than the value of
FunctionTolerance, the algorithm halts.

* ConstraintTolerance (not a stopping condition) — The algorithm treats a point to be feasible if
nonlinear constraint violation is less than ConstraintTolerance.

See Also

More About
. “Set Options” on page 5-51
. “How Pattern Search Polling Works” on page 5-25
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Search and Poll

In addition to polling the mesh points, the pattern search algorithm can perform an optional step at
every iteration, called search. At each iteration, the search step applies another optimization method
to the current point. If this search does not improve the current point, the poll step is performed.

Search Using a Poll Method

The following example illustrates the use of a search method on the problem described in
“Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65. In this
case, the search method is the MADS Positive Basis 2N poll. For comparison, first run the problem
without a search method.

x0=[210910];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;

Aeq = [718333;50-51-58; -2-67119;1-12-23-31;
beq = [84 62 65 1];
options = optimoptions('patternsearch',...
'"PlotFcn', {@psplotbestf,@psplotfuncount});
[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
Aineq,bineq,Aeq,beq, [1,[],[]1,0ptions);

Optimization terminated: mesh size less than options.MeshTolerance.

Best Function Value: 1919.49
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To use the MADS Positive Basis 2N poll as a search method, change the SearchFcn option.
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rng default % For reproducibility

options.SearchFcn = @MADSPositiveBasis2N;

[x2,fval2,exitflag2,output2] = patternsearch(@lincontest7,x0, ...
Aineq,bineq,Aeq,beq,[],[],[],0options);

Optimization terminated: mesh size less than options.MeshTolerance.

Best Function Value: 1919.49
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Both optimizations reached the same objective function value. Using the search method reduces the
number of function evaluations and the number of iterations.

table([output.funccount;output2.funccount], [output.iterations;output2.iterations],...
'VariableNames', ["Function Evaluations" "Iterations"], ...
'"RowNames', ["Without Search" "With Search"])

ans=2x2 table

Function Evaluations Iterations
Without Search 1462 136
With Search 1283 118

Search Using a Different Solver

patternsearch takes a long time to minimize Rosenbrock's function. The function is

£00 = 100(xz = x¢)* + (1 = x)?.
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Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-
Based”. The minimum of Rosenbrock's function is 0, attained at the point [1,1]. Because
patternsearch is not efficient at minimizing this function, use a different search method to help.

Create the objective function.
dejong2fcn = @(x)100*(x(2)-x(1)"2)"2 + (1-x(1))"2;

The default maximum number of iterations for patternsearch with two variables is 200, and the
default maximum number of function evaluations is 4000. Increase these values to
MaxFunctionEvaluations = 5000 and MaxIterations = 2000.

opts = optimoptions('patternsearch', 'MaxFunctionEvaluations',5000, 'MaxIterations',b2000);
Run patternsearch starting from [-1.9 2].

[x,feval,eflag,output] = patternsearch(dejong2fcn,...
[-1.9,21,01,01,01,01,01,01,[1,0pts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
disp(feval)
0.8560

The optimization did not complete, and the result is not very close to the optimal value of 0.

Set the options to use fminsearch as the search method, using the default number of function
evaluations and iterations.

opts = optimoptions('patternsearch',opts, 'SearchFcn',@searchneldermead);
Rerun the optimization.

[x2,feval2,eflag2,output2] = patternsearch(dejong2fcn, ...
[-1.9,2],[1,01,01,01,01,[1,[1,0pts);

Optimization terminated: mesh size less than options.MeshTolerance.
disp(feval2)

4.0686e-10

The results are much better when using this search method. fminsearch is more efficient at getting
close to the minimum of Rosenbrock's function.

See Also

More About
. “Polling Types” on page 5-53
. “Vectorize the Objective and Constraint Functions” on page 5-77
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Nonlinear Constraint Solver Algorithm

The pattern search algorithm uses the Augmented Lagrangian Pattern Search (ALPS) algorithm to
solve nonlinear constraint problems. The optimization problem solved by the ALPS algorithm is

minf(x)
X

such that

cilx)=0, i=1..m
ceqix) =0, i=m+1..mt
A-x<b
Aeq - x = beq
Ib < x < ub,

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality constraints,
m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear
constraints.

The ALPS algorithm attempts to solve a nonlinear optimization problem with nonlinear constraints,
linear constraints, and bounds. In this approach, bounds and linear constraints are handled
separately from nonlinear constraints. A subproblem is formulated by combining the objective
function and nonlinear constraint function using the Lagrangian and the penalty parameters. A
sequence of such optimization problems are approximately minimized using a pattern search
algorithm such that the linear constraints and bounds are satisfied.

Each subproblem solution represents one iteration. The number of function evaluations per iteration
is therefore much higher when using nonlinear constraints than otherwise.

A subproblem formulation is defined as

m mt o mt 2
O(x,A,5,0) = f(x) = > Aslog(si—ci(x)+ > Aceqi(x) + 5 > ceqi(x)”,
i=1 i=m+1 i=m+1

where

* The components A; of the vector A are nonnegative and are known as Lagrange multiplier
estimates

* The elements s; of the vector s are nonnegative shifts
* pis the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The pattern search minimizes a sequence of subproblems, each of which is an approximation of the
original problem. Each subproblem has a fixed value of 4, s, and p. When the subproblem is
minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are
updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This
results in a new subproblem formulation and minimization problem. These steps are repeated until
the stopping criteria are met.

Each subproblem solution represents one iteration. The number of function evaluations per iteration
is therefore much higher when using nonlinear constraints than otherwise.
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For a complete description of the algorithm, see the following references:
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See Also

More About

. “Constrained Minimization Using Pattern Search, Solver-Based” on page 5-12
. “Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65
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Custom Plot Function

In this section...

“About Custom Plot Functions” on page 5-43

“Creating the Custom Plot Function” on page 5-43

“Set Up the Problem” on page 5-44

“Run the Optimization with Custom Plot Function” on page 5-44

“How the Plot Function Works” on page 5-45

About Custom Plot Functions

To use a plot function other than those included with the software, you can write your own custom
plot function that is called at each iteration of the pattern search to create the plot. This example
shows how to create a plot function that displays the logarithmic change in the best objective
function value from the previous iteration to the current iteration. More plot function details are
available in “Plot Options” on page 15-23.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new function file
in the MATLAB Editor:

function stop = psplotchange(optimvalues, flag)
% PSPLOTCHANGE Plots the change in the best objective function
% value from the previous iteration.

% Best objective function value in the previous iteration
persistent last_best

stop = false;
if(strcmp(flag, 'init'))
set(gca, 'Yscale','log'); %Set up the plot
hold on;
xlabel('Iteration');
ylabel('Log Change in Values');
title(['Change in Best Function Value']);
end

% Best objective function value in the current iteration
best = min(optimvalues.fval);

% Set last best to best
if optimvalues.iteration ==
last best = best;

else
%Change in objective function value
change = last best - best;
plot(optimvalues.iteration, change, '.r');
end

Save the file as psplotchange.min a folder on the MATLAB path. The code is explained in “How the
Plot Function Works” on page 5-45.
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Set Up the Problem

The problem is the same as “Constrained Minimization Using patternsearch and Optimize Live Editor
Task” on page 5-65. To set up the problem:

1 Enter the following at the MATLAB command line:

x0 = [
Aineq
bineq
Aeq =
beq =

2 Because this is a linearly constrained problem, set the Pol1Method option to

1
[-
7

[718333,;50-51-58; -2-67119;1-12-23 -3];

[84 62 65 1];

'GSSPositiveBasis2N'. Include both the @psplotbestf built-in plot function and the custom
plot function @psplotchange in the options.

options = optimoptions('patternsearch',...
'PlotFcn',{@psplotbestf,@psplotchange}, ...
'PollMethod', 'GSSPositiveBasis2N');

Run the

Optimization with Custom Plot Function

Run the example by calling patternsearch starting from x0.

[x,fval] = patternsearch(@lincontest7,x0,...

Aineq,

Function value
%]
[
=

Log Change in Values

5-44

bineq,Aeq,beq, [1,[]1,[]1,0options);

Best Function Value: 1919.54
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Because the scale of the y-axis in the lower custom plot is logarithmic, the plot shows only changes

that are greater than 0.

How the Plot Function Works

The plot function uses information contained in the following structures.

* optimvalues — Current state of the solver, a structure

+ flag — Current status of the algorithm, a character vector

The most important statements of the custom plot function, psplotchange.m, are summarized in

the following table.

Custom Plot Function Statements

Statement

Description

persistent last best

Creates the persistent variable last best, the
best objective function value in the previous
generation. Persistent variables are preserved
over multiple calls to the plot function.

set(gca, 'Yscale', 'log')

Sets up the plot before the algorithm starts.

best = min(optimvalues. fval)

Sets best equal to the minimum objective
function value. The field optimvalues. fval
contains the objective function value in the
current iteration. The variable best is the
minimum objective function value. For a complete
description of the fields of the structure
optimvalues, see “Structure of the Plot
Functions” on page 15-8.

change = last best - best

Sets the variable change to the best objective
function value at the previous iteration minus the
best objective function value in the current
iteration.

plot(optimvalues.iteration, change,
|.r.|)

Plots the variable change at the current objective
function value, for the current iteration contained
inoptimvalues.iteration.

See Also

More About
. “Plot Options” on page 15-23
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This example shows visually how pattern search optimizes a function. The function is the height of
the terrain near Mount Washington, as a function of the x-y location. In order to find the top of Mount
Washington, we minimize the objective function that is the negative of the height. (The Mount
Washington in this example is the highest peak in the northeastern United States.)

The US Geological Survey provides data on the height of the terrain as a function of the x-y location
on a grid. In order to be able to evaluate the height at an arbitrary point, the objective function
interpolates the height from nearby grid points.

It would be faster, of course, to simply find the maximum value of the height as specified on the grid,
using the max function. The point of this example is to show how the pattern search algorithm
operates; it works on functions defined over continuous regions, not just grid points. Also, if it is
computationally expensive to evaluate the objective function, then performing this evaluation on a
complete grid, as required by the max function, will be much less efficient than using the pattern
search algorithm, which samples a small subset of grid points.

How Pattern Search Works

Pattern search finds a local minimum of an objective function by the following method, called polling.
In this description, words describing pattern search quantities are in bold. The search starts at an
initial point, which is taken as the current point in the first step:

1. Generate a pattern of points, typically plus and minus the coordinate directions, times a mesh
size, and center this pattern on the current point.

2. Evaluate the objective function at every point in the pattern.

3. If the minimum objective in the pattern is lower than the value at the current point, then the poll
is successful, and the following happens:

3a. The minimum point found becomes the current point.

3b. The mesh size is doubled.

3c. The algorithm proceeds to Step 1.

4. If the poll is not successful, then the following happens:

4a. The mesh size is halved.

4b. If the mesh size is below a threshold, the iterations stop.

4c. Otherwise, the current point is retained, and the algorithm proceeds at Step 1.

This simple algorithm, with some minor modifications, provides a robust and straightforward method
for optimization. It requires no gradients of the objective function. It lends itself to constraints, too,
but this example and description deal only with unconstrained problems.

Preparing the Pattern Search

To prepare the pattern search, load the data in mtWashington.mat, which contains the USGS data
on a 472-by-345 grid. The elevation, Z, is given in feet. The vectors x and y contain the base values of



Pattern Search Climbs Mount Washington

the grid spacing in the east and north directions respectively. The data file also contains the starting
point for the search, XO0.

load mtWashington

There are three MATLAB files that perform the calculation of the objective function, and the plotting
routines. They are:

1. terrainfun, which evaluates the negative of height at any x-y position. terrainfun uses the
MATLAB® function interp2 to perform two-dimensional linear interpolation. It takes the Z data and
enables evaluation of the negative of the height at all x-y points.

2. psoutputwashington, which draws a 3-d rendering of Mt. Washington. In addition, as the run
progresses, it draws spheres around each point that is better (higher) than previously-visited points.

3. psplotwashington, which draws a contour map of Mt. Washington, and monitors a slider that
controls the speed of the run. It shows where the pattern search algorithm looks for optima by
drawing + signs at those points. It also draws spheres around each point that is better than
previously-visited points.

In the example, patternsearch uses terrainfun as its objective function, psoutputwashington
as an output function, and psplotwashington as a plot function. We prepare the functions to be
passed to patternsearch in anonymous function syntax:

mtWashObjectiveFcn = @(xx) terrainfun(xx, x, y, Z);
mtWashOutputFcn = @(xx,argl,arg2) psoutputwashington(xx,argl,arg2, x, vy, Z);
mtWashPlotFcn = @(xx,argl) psplotwashington(xx,argl, x, y, Z);

Pattern Search Options Settings

Next, we create options for pattern search. This set of options has the algorithm halt when the mesh
size shrinks below 1, keeps the mesh unscaled (the same size in each direction), sets the initial mesh
size to 10, and sets the output function and plot function:

options = optimoptions(@patternsearch, 'MeshTolerance',1, 'ScaleMesh', false,
'InitialMeshSize',10, 'UseCompletePoll’,true, 'PlotFcn',mtWashPlotFcn,
"OutputFcn',mtWashOutputFcn, 'UseVectorized',true);

Observing the Progress of Pattern Search

When you run this example you see two windows. One shows the points the pattern search algorithm
chooses on a two-dimensional contour map of Mount Washington. This window has a slider that
controls the delay between iterations of the algorithm (when it returns to Step 1 in the description of
how pattern search works). Set the slider to a low position to speed the run, or to a high position to
slow the run.

The other window shows a three-dimensional plot of Mount Washington, along with the steps the
pattern search algorithm makes. You can rotate this plot while the run progresses to get different
views.

[xfinal ffinal] = patternsearch(mtWashObjectiveFcn,X0,[1,[]1,[1,[1,[],
[1,[1,options)

Optimization terminated: mesh size less than options.MeshTolerance.
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The final point, xfinal, shows where the pattern search algorithm finished; this is the x-y location of
the top of Mount Washington. The final objective function, ffinal, is the negative of the height of
Mount Washington, 6280 feet. (This should be 6288 feet according to the Mount Washington
Observatory).

Examine the files terrainfun.m, psoutputwashington.m, and psplotwashington.m to see how
the interpolation and graphics work.

There are many options available for the pattern search algorithm. For example, the algorithm can
take the first point it finds that is an improvement, rather than polling all the points in the pattern. It

can poll the points in various orders. And it can use different patterns for the poll, both deterministic
and random. Consult the Global Optimization Toolbox User's Guide for details.

See Also

More About
. “How Pattern Search Polling Works” on page 5-25
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. “Custom Plot Function” on page 5-43
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Set Options

You can specify any available patternsearch options by passing options as an input argument to
patternsearch using the syntax

[x,fval] = patternsearch(@fitnessfun,nvars,
A,b,Aeq,beq,lb,ub,nonlcon,options)

Pass in empty brackets [] for any constraints that do not appear in the problem.

Create options using the optimoptions function.

options

options
patternsearch options:

Set properties:
No options set.

Default properties:

optimoptions(@patternsearch)

AccelerateMesh: 0
ConstraintTolerance: 1.0000e-06
Display: 'final'
FunctionTolerance: 1.0000e-06
InitialMeshSize: 1
MaxFunctionEvaluations: '2000*numberOfVariables'
MaxIterations: '100*numberOfVariables'
MaxTime: Inf
MeshContractionFactor: 0.5000
MeshExpansionFactor: 2
MeshTolerance: 1.0000e-06
OutputFcn: []
PlotFcn: T[]
PollMethod: 'GPSPositiveBasis2N'
PollOrderAlgorithm: 'consecutive'’
ScaleMesh: 1
SearchFcn: []
StepTolerance: 1.0000e-06
UseCompletePoll: 0
UseCompleteSearch: 0
UseParallel: 0
UseVectorized: 0

The patternsearch function uses these default values if you do not pass in options as an input
argument.

The value of each option is stored in a field of options, such as options.MeshExpansionFactor.
You can display any of these values by entering options followed by the name of the field. For
example, to display the mesh expansion factor for the pattern search, enter

options.MeshExpansionFactor

ans =
2
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To create options with a field value that is different from the default, use optimoptions. For
example, to change the mesh expansion factor to 3 instead of its default value 2, enter

options = optimoptions('patternsearch', 'MeshExpansionFactor',3);

This creates options with all values set to defaults except for MeshExpansionFactor, which is set
to 3.

If you now call patternsearch with the argument options, the pattern search uses a mesh
expansion factor of 3.

If you subsequently decide to change another field in options, such as setting PLlotFcn to
@psplotmeshsize, which plots the mesh size at each iteration, call optimoptions with the syntax

options = optimoptions(options, 'PlotFcn',@psplotmeshsize)

This preserves the current values of all fields of options except for PlotFcn, which is changed to
@plotmeshsize. Note that if you omit the options input argument, optimoptions resets
MeshExpansionFactor to its default value, which is 2.

You can also set both MeshExpansionFactor and PlotFcn with the single command

options = optimoptions('patternsearch', 'MeshExpansionFactor',3, 'PlotFcn',@psplotmeshsize)

See Also
patternsearch | optimoptions

More About
. “Pattern Search Options” on page 15-7
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Polling Types

In this section...
“Using a Complete Poll in a Generalized Pattern Search” on page 5-53
“Compare the Efficiency of Poll Options” on page 5-55

Using a Complete Poll in a Generalized Pattern Search
As an example, consider the following function.

x%+x%—25 forx%+x%525

fla,x2) =133 + (g = 9)% = 16 for x§ + (x; — 9)* < 16
0 otherwise.

The following figure shows a plot of the function.

5Gllr:nr:ral minirmum at [0,0]

Local minimum at [0,9] -5 10

The global minimum of the function occurs at (0, 0), where its value is -25. However, the function also
has a local minimum at (0, 9), where its value is -16.

To create a file that computes the function, copy and paste the following code into a new file in the
MATLAB Editor.
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function z = poll example(x)
if x(1)72 + x(2)"2 <= 25
z = X(1)72 + x(2)72 - 25;
elseif x(1)72 + (x(2) - 9)"2 <= 16
z = X(1)"2 + (x(2) - 9)"2 - 16;
else z = 0;
end

Save the file as poll example.m in a folder on the MATLAB path.
To run a pattern search on the function, enter the following.
options = optimoptions('patternsearch', 'Display','iter');
[x,fval] = patternsearch(@poll example,[0,5], ...
(1,01,01,01,01,01,[1,0ptions)

MATLAB returns a table of iterations and the solution.

-16

The algorithm begins by a=evaluating the function at the initial point, f(0, 5) = 0. The poll evaluates
the following during its first iterations.

fl(0,5) +(1,0) =f(1,5) =0
fl(0, 5) + (0, 1)) = f(0, 6) = -7

As soon as the search polls the mesh point (0, 6), at which the objective function value is less than at
the initial point, it stops polling the current mesh and sets the current point at the next iteration to (0,
6). Consequently, the search moves toward the local minimum at (0, 9) at the first iteration. You see
this by looking at the first two lines of the command line display.

Iter f-count f(x) MeshSize Method
0 1 0 1
1 3 -7 2 Successful Poll

Note that the pattern search performs only two evaluations of the objective function at the first
iteration, increasing the total function count from 1 to 3.

Next, set UseCompletePoll to true and rerun the optimization.

options.UseCompletePoll = true;
[x,fval] = patternsearch(@poll example,[0,5], ...
(1,01,01,01,01,101,[1,0ptions);

This time, the pattern search finds the global minimum at (0, 0). The difference between this run and
the previous one is that with UseCompletePoll set to true, at the first iteration the pattern search
polls all four mesh points.

fl(0,5) +(1,0) =f(1,5) =0
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f(0, 5) + (0, 1)) = f(0, 6) = -6
fl(0,5) +(-1,0)=f(-1,5) =0

ft(0, 5) + (0, -1)) = f(0, 4) = -9

Because the last mesh point has the lowest objective function value, the pattern search selects it as
the current point at the next iteration. The first two lines of the command-line display show this.

Iter f-count f(x) MeshSize Method
0 1 0 1
1 5 -9 2 Successful Poll

In this case, the objective function is evaluated four times at the first iteration. As a result, the
pattern search moves toward the global minimum at (0, 0).

The following figure compares the sequence of points returned when Complete poll is set to Of f
with the sequence when Complete poll is On.

14
O Initial point
127 #* Complete poll off
+ Complete poll on
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/ S T

f i - -
ok [ 4= |

l"._\ /IJ_.
2 No——
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-5 - -2 0 2 4 G ) 10 12 14

Compare the Efficiency of Poll Options

This example shows how several poll options interact in terms of iterations and total function
evaluations. The main results are:

* GSS is more efficient than GPS or MADS for linearly constrained problems.
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Whether setting UseCompletePoll to true increases efficiency or decreases efficiency is
unclear, although it affects the number of iterations.

Similarly, whether having a 2N poll is more or less efficient than having an Np1 poll is also unclear.
The most efficient poll is GSS Positive Basis Npl with Complete poll set to on. The least
efficient is MADS Positive Basis Npl with Complete poll set to on.

Note The efficiency of an algorithm depends on the problem. GSS is efficient for linearly constrained
problems. However, predicting the efficiency implications of the other poll options is difficult, as is
knowing which poll type works best with other constraints.

Problem setup

The problem is the same as in “Solve Using patternsearch in Optimize Live Editor Task” on page 5-
66. This linearly constrained problem uses the Lincontest7 file that comes with the toolbox:

1

Enter the following into your MATLAB workspace.

Aeq =[718333;50-51-58; -2-67119;1-12-23-31];
beq = [84 62 65 1];
Set the initial options and objective function.

options = optimoptions('patternsearch',...
'"PollMethod', 'GPSPositiveBasis2N', ...
'Poll0rderAlgorithm', 'consecutive’, ...
'UseCompletePoll', false);

fun = @lincontest7;

Run the optimization, naming the output structure outputgps2noff.

[x,fval,exitflag,outputgps2noff] = patternsearch(fun,x0,...
Aineq,bineq,Aeq,beq,[1,[],[]1,0options);
Set options to use a complete poll.

options.UseCompletePoll = true;
Run the optimization, naming the output structure outputgps2non.

[x,fval,exitflag,outputgps2non] = patternsearch(fun,x0, ...
Aineq,bineq,Aeq,beq,[]1,[]1,[]1,0ptions);

Continue in a like manner to create output structures for the other poll methods with

UseCompletePoll set true and false: outputgss2noff, outputgss2non,

outputgssnploff, outputgssnplon, outputmads2noff, outputmads2non,

outputmadsnploff, and outputmadsnplon.

Examine the Results

You have the results of 12 optimization runs. The following table shows the efficiency of the runs,
measured in total function counts and in iterations. Your MADS results could differ, since MADS is a
stochastic algorithm.

Algorithm Function Count Iterations

GPS2N, complete poll off 1462 136
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Algorithm Function Count Iterations
GPS2N, complete poll on 1396 96
GPSNpl, complete poll off 864 118
GPSNp1, complete poll on 1007 104
GSS2N, complete poll off 758 84
GSS2N, complete poll on 889 74
GSSNpl1, complete poll off 533 94
GSSNp1, complete poll on 491 70
MADS2N, complete poll off 922 162
MADS2N, complete poll on 2285 273
MADSNp1, complete poll off 1155 201
MADSNp1, complete poll on 1651 201

To obtain, say, the first row in the table, enter gps2noff.output. funccount and
gps2noff.output.iterations. You can also examine options in the Variables editor by double-
clicking the options in the Workspace Browser, and then double-clicking the output structure.

Workspace

WYalue i
<4y doublex -B
[-8,7.3,-4.8.0] -8
201 201
[84 62651] 1

7 7
=1 struct=

<1x1 struct=

<11 struct=

gps2noff =
gps2noff <1x1 struct=
Field =~ Value Min Mazx
[ « [8.5164,-6.10954.098... -61095 &.5164
- fval 1.9195e+03 1.9195... 1.9195..,
- exitflag 1 1 1

%m <1x] struct=
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B4 Variables - gps2noff.output

gps2noff K[gpﬂnuﬁ.uutput X

[E| gpsnoff.output <1xd struct>

Alternatively, you can access the data from the output structures.

[outputgps2noff.funccount,outputgps2noff.iterations]

ans =
1462 136

The main results gleaned from the table are:

* Setting UseCompletePoll to true generally lowers the number of iterations for GPS and GSS,
but the change in number of function evaluations is unpredictable.

» Setting UseCompletePoll to true does not necessarily change the number of iterations for
MADS, but substantially increases the number of function evaluations.

* The most efficient algorithm/options settings, with efficiency meaning lowest function count:

A W N =

The other poll methods had function counts exceeding 900.

» For this problem, the most efficient poll is ' GSSPositiveBasisNpl' with UseCompletePoll
set to true, although the UseCompletePoll setting makes only a small difference. The least
efficient poll is 'MADSPositiveBasis2N' with UseCompletePoll set to true. In this case, the
UseCompletePoll setting makes a substantial difference.

See Also

More About

Field WValue Min
|| function @lincontest?

|:bc| problemntype 'linearcenstraints'

|20c| pollmethod 'gpspositivebasis2n’

1 searchmethod []

1 iterations 136 136

| funccount 1462 1462
1 meshsize 9.5367e-07 9.5367...
] maxconstraint 9,994 5e-04 9.9945...
|:bc| message 'Optimization termin...

M ax

136
1462
9.5367...
9.9945...

'GSSPositiveBasisNpl' with UseCompletePoll set to true (function count 491)
'GSSPositiveBasisNpl' with UseCompletePoll set to false (function count 533)
'GSSPositiveBasis2N' with UseCompletePoll set to false (function count 758)
'GSSPositiveBasis2N' with UseCompletePoll set to true (function count 889)

. “How Pattern Search Polling Works” on page 5-25

. “Searching and Polling” on page 5-33
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“Search and Poll” on page 5-38
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In this section...

“Mesh Expansion and Contraction” on page 5-60
“Mesh Accelerator” on page 5-63

Mesh Expansion and Contraction

The MeshExpansionFactor and MeshContractionFactor options control how much the mesh
size is expanded or contracted at each iteration. With the default MeshExpansionFactor value of 2,
the pattern search multiplies the mesh size by 2 after each successful poll. With the default
MeshContractionFactor value of 0.5, the pattern search multiplies the mesh size by 0.5 after
each unsuccessful poll.

You can view the expansion and contraction of the mesh size during the pattern search by setting
@psplotmeshsize as the PlotFcn option. To also display the values of the mesh size and objective
function at the command line, set the Display optionto 'iter"'.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 5-65 as follows:

1 Enter the following at the command line:

Aeq = [718333;50-51-58; -2-67119;1-12-23-3];
beq = [84 62 65 1];

2 Create options to use the GSSPositiveBasis2N poll method, give iterative display, and plot the
mesh size.

options = optimoptions('patternsearch',...
'"Pol1lMethod', 'GSSPositiveBasis2N', ...
"PlotFcn',@psplotmeshsize, ...
'Display', 'iter');
3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0, ...
Aineq,bineq,Aeq,beq,[],[]1,[],0options);
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Current Mesh Size: 9.53674e-07
35

30

25
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Mesh size
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[teration

To see the changes in mesh size more clearly, change the y-axis to logarithmic scaling as follows:

1 Select Axes Properties from the Edit menu in the plot window.
2 In the Properties Editor, select the Rulers tab.
3 Set YScale to Log.

Updating these settings in the MATLAB Property Editor shows the plot in the following figure.
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Current Mesh Size: 9.5367 4e-07
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The first 5 iterations result in successful polls, so the mesh sizes increase steadily during this time.
You can see that the first unsuccessful poll occurs at iteration 6 by looking at the command-line
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display.

Iter f-count f(x) MeshSize Method
0 1 2273.76 1
1 2 2251.69 2 Successful Poll
2 3 2209.86 4 Successful Poll
3 4 2135.43 8 Successful Poll
4 5 2023.48 16 Successful Poll
5 6 1947.23 32 Successful Poll
6 15 1947.23 16 Refine Mesh

Note that at iteration 5, which is successful, the mesh size doubles for the next iteration. But at
iteration 6, which is unsuccessful, the mesh size is multiplied 0. 5.

To see how MeshExpansionFactor and MeshContractionFactor affect the pattern search, set
MeshExpansionFactor to 3.0 and set MeshContractionFactor to 2/3.

options = optimoptions(options, 'MeshExpansionFactor',3.0,...
'MeshContractionFactor',2/3);

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0,...
Aineq,bineq,Aeq,beq,[1,[],[],0ptions);

The final objective function value is approximately the same as with the previous settings, but the
solver takes longer to reach that point.
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When you change the scaling of the y-axis to logarithmic, the mesh size plot appears as shown in the
following figure.

Current Mesh Size: 9.22379e-07
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Note that the mesh size increases faster with MeshExpansionFactor set to 3.0, as compared with
the default value of 2.0, and decreases more slowly with MeshContractionFactor setto 2/3, as
compared with the default value of 0. 5.

Mesh Accelerator

The mesh accelerator can make a pattern search converge faster to an optimal point by reducing the
number of iterations required to reach the mesh tolerance. When the mesh size is below a certain
value, the pattern search contracts the mesh size by a factor smaller than the
MeshContractionFactor factor. Mesh accelerator applies only to the GPS and GSS algorithms.

Note For best results, use the mesh accelerator for problems in which the objective function is not
too steep near the optimal point, or you might lose some accuracy. For differentiable problems, this
means that the absolute value of the derivative is not too large near the solution.

To use the mesh accelerator, set the AccelerateMesh option to true.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 5-65 as follows:

5-63



5 Using Direct Search

5-64

1 Enter the following at the command line:

x0=[2100910];
Aineq [-8 7 3 -4 9 0];
bineq 7;
Aeq =[718333;50-51-58; -2-67119;1-12-23-31;
beq = [84 62 65 1];
2 Create options, including the mesh accelerator.

options = optimoptions('patternsearch',...
'"Pol1Method', 'GSSPositiveBasis2N', ...
'Display', 'iter', 'AccelerateMesh', true);
3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0, ...
Aineq,bineq,Aeq,beq, [1,[],[],options);

patternsearch completes in 78 iterations, compared to 84 iterations when the mesh accelerator is
not on. You can see the effect of the mesh accelerator in the iterative display. Run the example with
and without mesh acceleration. The mesh sizes are the same until iteration 70, but differ at iteration
71. The MATLAB Command Window displays the following lines for iterations 70 and 71 without the
accelerator.

Iter f-count f(x) MeshSize Method
70 618 1919.54 6.104e-05 Refine Mesh
71 630 1919.54 3.052e-05 Refine Mesh

Note that the mesh size is multiplied by 0.5, the default value of MeshContractionFactor.

For comparison, the Command Window displays the following lines for the same iteration numbers
with the accelerator.

Iter f-count f(x) MeshSize Method
70 618 1919.54 6.104e-05 Refine Mesh
71 630 1919.54 1.526e-05 Refine Mesh

In this case the mesh size is multiplied by 0. 25.
See Also

More About

. “Effects of Pattern Search Options” on page 5-16
. “Pattern Search Options” on page 15-7

. “How Pattern Search Polling Works” on page 5-25
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Constrained Minimization Using patternsearch and Optimize
Live Editor Task

In this section...

“Problem Description” on page 5-65
“Solve Using patternsearch in Optimize Live Editor Task” on page 5-66

“Solve Using patternsearch at the Command Line” on page 5-72

This example shows how to solve a constrained minimization problem using both the Optimize Live
Editor task, which offers a visual approach, and the command line.

Problem Description

The problem involves using linear and nonlinear constraints when minimizing a nonlinear function
with patternsearch. The objective function is

F(x) = %XTHX + fo,
where
H= [36 17 19 12 8 15;

17 33 18 11 7 14;
19 18 43 13 8 16;
12 11 13 18 6 11;
8 7 8 6 9 8;
15 14 16 11 8 29];

f [ 20 15 21 18 29 24 ]';

F @Q(Xx)0.5*x"*H*x + f'*x;

This objective function is also included with your software in the file Lincontest7.m.

The linear constraints are

A-x<b,
Aeq - x = beq,
where
A=1[-87 3 -490];
b =7;
Aeq = [7 18 3 3 3;
50 -51 -5 8;
-2 -6 71109;
1-12-23 -3];
beq = [84 62 65 1]';

Enter the preceding code sections to get the problem variables into your workspace before
proceeding.
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Solve Using patternsearch in Optimize Live Editor Task

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

HOME .

Pl L

n Mew
ot |Live Script

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.

INSERT

== — —
—— =
de Control | Task | Section Br
- -
CODE

DATA PREPROCESS

Clean Missing Cl
Data

TABLES AMND TIMET,

==
03

EH
Join Tables

OPTIMIZATION

SN

Optimize
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Optimize O 7

Minimize a function with or without constraints

= Specify problem type

. f .
-‘ 1_0 [ AW l|l II _Il ;]
Objective ; = :
Linear Quadratic Least squares Menlinear Monsmooth

Select an objective type to see example functions

|D Unconstrained | ‘E Lower bounds | ‘ﬂ Upper bounds | ‘D Linear inequality

Constraints || . , 1] 1 [ . 1]
|Z Linear equality | ‘ Second-order cnne| ‘ Monlinear | ‘ Intager

Select constraint types to see example formulas

Solver | fmincon - Constrained nonlinear minimization (recommended} \ e

= Select problem data

Objective function | From file v | |:E5ro'.f.rse...:| |:New._.:| (7]

Initial point (x0) | select ¥ |

} Specify solver options

~ Display progress

Text display | Final output v |
Plot [ | Current paint [ |Evaluation count | | Objective value and feasibility | | Objective value
| |Max constraint violation | | Step size [ | Optimality measure

3 Specify Problem Type

In the Specify problem type section of the task, click the Objective > Nonlinear button.
4 Click the Constraints > Linear inequality and Linear equality buttons.
5 Select Solver > patternsearch - Pattern search.
6 Select Problem Data

Enter the problem variables in the Select problem data section of the task. To specify the
objective function, select Objective function > Function handle and choose F.

7 Set the inequality constraints to A and b. Set the equality constraints to Aeq and beq.

8 To set the initial point, you first need to create a new section above the task. To do so, click the
Section Break button on the Insert tab. In the new section above the task, enter the following
code for the initial point.

x0=[2106910]";
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9 Run the section to place x0 into the workspace. To run the section, place the cursor in the
section and press Ctrl+Enter or click the blue striped bar to the left of the line number.

10 In the Select problem data section of the task, set x0 as the initial point.

11 Specify Solver Options

Because this problem is linearly constrained, specify an additional solver option. Expand the
Specify solver options section of the task, and then click the Add button. Set the Poll settings
> Poll method to GSSPositiveBasis2N. For more information about the efficiency of the GSS
poll methods for linearly constrained problems, see “Compare the Efficiency of Poll Options” on
page 5-55.

12 Set Display Options

In the Display progress section of the task, select the Best value and Mesh size plot functions.

Your setup looks like this:

Solver patternsearch - Pattern search v 0

+~ Select problem data

Objective function | Function handle F v 0
Initial point (x0) %0 v
Constraints Linear inequality A |A ¥| *x< b |b v

Linear equality Aeq |Aeq ¥ | *y= beg |beq v
= Specify solver options
0 Poll settings ¥ Polling algorithm ¥ | | G5S5PositiveBasis2N v - +
~ Display progress
Text display |Final output W

Plat +'| Best value +'| Mesh size Evaluation count Best point

Max constraint violation

13 Run Solver and Examine Results

To run the solver, click the options button : at the top right of the task window, and select Run
Section.
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— Controls and Code
®  Controls Only
Code Only

Autorun Section

Fun Section

Restore Default Values
Convert Task to Editable Code
Insert Section Break

Cut

Copy
- Paste

ar Help

Ctrl+Enter

Ctrl+ Alt+Enter

Ctrl+ X
Ctrl+C
Ctrl+V

Fi

The plots appear in a separate figure window and in the task output area.
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14 To obtain the solution point and objective function value at the solution, look at the top of the

task.
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15

Constraints

Optimize

solution |,| objectiveValue

= Minimize F using patternsearch solver

The Optimize Live Editor task returns the solution in a variable named solution and returns
the objective function value in a variable named objectiveValue. View these values by
entering the following code in the section below the task and then running the section, or by
entering the code at the MATLAB command line.

disp(solution)

8.5165
-6.1094
4.0989
.2877
.2348
.1812

1
N B

disp(objectiveValue)

1.9195e+03

Include Nonlinear Constraints

Add the following nonlinear constraints to the problem.

-154+x1%+x1—x3=<0
-Xx1x9 — 10 = 0.

To include these constraints, first click the Constraints > Nonlinear button.

Unconstrained

ﬁ N 1
/| Linear equality

Examples: x4+ y <5, x4+ y= l.cos(x)} < 0,x°=0

Lower bounds

" | Second-order cone

Upper bounds

Manlinear

[

Linear inequality

16 In the Select problem data section, under Constraints, select Nonlinear > Local function
and then click the New button. The function appears in a new section below the task. Edit the
resulting code to contain the following lines.

17
18

function [c, ceq] = double ineq(x)

c = [-1.5 + x(1)*x(2) + x(1)

-x(1)*x(2) - 10];
ceq = [1;
end

- x(2);

In the Nonlinear constraints section, select double_ineq.

The nonlinear constraint algorithm causes patternsearch to take many function evaluations. In

the Specify solver options section, click the plus sign to the right of the current options to
display additional options. Then increase the maximum function evaluation limit to 5e4.
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Specify solver options

0 |:F’nllsetting5 v | I:F'nlling algorithm "l":l |:GSSPa5itiveBasi52N v

|’F'.un time limits v ~| IEMaxfunction evals "l'"l bed

19 Run the task again to rerun the optimization.

Best Function Value: 2401.77
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20 View the solution and objective function value.
disp(solution)

7.2083
-1.3873
4.9579
-3.1393
-3.1843
4.7457

disp(objectiveValue)

2.4018e+03

The objective function value is higher than the value in the problem without nonlinear constraints.
The previous solution is not feasible with respect to the nonlinear constraints.

The plots show many fewer iterations than before because the nonlinear constraint algorithm
changes the patternsearch algorithm to include another outer loop to solve a modified problem.
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The outer loop reduces the modification to the problem at each major iteration. In this case, the
algorithm makes only four outer iterations. For algorithm details, see “Nonlinear Constraint Solver
Algorithm” on page 5-41.

Solve Using patternsearch at the Command Line

To solve the original problem (only linear constraints) at the command line, execute the following
code.

x0=[210910]";

options = optimoptions('patternsearch',...
'PollMethod', 'GSSPositiveBasis2N', ...
'"PlotFcn',{'psplotbestf', 'psplotmeshsize'});

b = [];

ub = [1;

nonlcon = [];

[x,fval] = patternsearch(F,x0,A,b,Aeq,beq,1lb,ub,nonlcon,options)

Optimization terminated: mesh size less than options.MeshTolerance.
X =

.5165
.1094
.0989
.2877
.2348
.1812

NBARFRP RO

fval =
1.9195e+03
patternsearch generates the first pair of plots shown in the Optimize Live Editor task example.

To include the nonlinear constraints, save the following code to a file named double ineq.m on the
MATLAB path.

function [c, ceq] =

c = [-1.5 + x(1)*x(
-x(1)*x(2) - 10

ceq = [1

end

double ineq(x)
2) + x(1) - x(2);
1;

’

To allow the solver to run to completion with nonlinear constraints, increase the allowed number of
function evaluations.

options.MaxFunctionEvaluations = 5e4;
Solve the problem including nonlinear constraints.

nonlcon = @double ineq;
[x,fval] = patternsearch(F,x0,A,b,Aeq,beq,1lb,ub,nonlcon,options)

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.
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7.2083
-1.3873
4.9579
-3.1393
-3.1843
4.7457

fval =
2.4018e+03

patternsearch also generates the second pair of plots shown in the Optimize Live Editor task
example.

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also
patternsearch

More About

. “Constrained Minimization Using Pattern Search, Solver-Based” on page 5-12
. “Effects of Pattern Search Options” on page 5-16

. “Optimize an ODE in Parallel” on page 5-81

. “Add Interactive Tasks to a Live Script”
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Use Cache

5-74

Typically, at any given iteration of a pattern search, some of the mesh points might coincide with
mesh points at previous iterations. By default, the pattern search recomputes the objective function
at these mesh points even though it has already computed their values and found that they are not
optimal. If computing the objective function takes a long time, this can make the pattern search run
significantly longer.

You can eliminate these redundant computations by using a cache, that is, by storing a history of the
points that the pattern search has already visited. To do so, set Cache to On in Cache options. At
each poll, the pattern search checks to see whether the current mesh point is within a specified
tolerance, Tolerance, of a point in the cache. If so, the search does not compute the objective
function for that point, but uses the cached function value and moves on to the next point.

Note When Cache is set to On, the pattern search might fail to identify a point in the current mesh
that improves the objective function because it is within the specified tolerance of a point in the
cache. As a result, the pattern search might run for more iterations with Cache set to On than with
Cache set to Off. It is generally a good idea to keep the value of Tolerance very small, especially for
highly nonlinear objective functions.

Note Cache does not work when you run the solver in parallel.

For example, set up the problem described in “Constrained Minimization Using patternsearch and
Optimize Live Editor Task” on page 5-65 as follows:

1 Enter the following at the command line:

x0=[210910];
Aineq = [-8 7 3 -4 9 0];
bineq = 7;

Aeq=[718333;50-51-58; -2-67119;1-12-23-3];
beq = [84 62 65 11;

2 Create options to plot the best function value and function evaluations. Because the problem has
linear constraints, use the 'GSSPositiveBasis2N' poll method. Turn off the display.

opts = optimoptions('patternsearch', 'PollMethod"', 'GSSPositiveBasis2N',...
'PlotFcn', {@psplotbestf,@splotfuncount}, 'Display', 'none');
3 Run the optimization.

[x,fval,exitflag,output] = patternsearch(@lincontest7,x0, ...
Aineq,bineq,Aeq,beq, [],[],[],0pts);

After the pattern search finishes, the plots appear as shown in the following figure.



Use Cache

Functicn Evaluations Per Interval
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Best Function Value: 1919.54

Note that the total function count is 758.

Now, set the Cache option to 'On' and run the example again.

opts.Cache = 'on';
[x2,fval2,exitflag2,output2] = patternsearch(@lincontest7,x0,...

Aineq,bineq,Aeq,beq, []1,[],[],0pts);
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5-76
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758

The total function count is reduced to 735.

[output.funccount,output2.funccount]

735

See Also
patternsearch

More About

“Pattern Search Options” on page 15-7



Vectorize the Objective and Constraint Functions

Vectorize the Objective and Constraint Functions

In this section...

“Vectorize for Speed” on page 5-77
“Vectorized Objective Function” on page 5-77
“Vectorized Constraint Functions” on page 5-79

“Example of Vectorized Objective and Constraints” on page 5-79

Vectorize for Speed

Direct search often runs faster if you vectorize the objective and nonlinear constraint functions. This
means your functions evaluate all the points in a poll or search pattern at once, with one function
call, without having to loop through the points one at a time. Therefore, the option UseVectorized
= true works only when UseCompletePoll or UseCompleteSearch is also set to true. However,
when you set UseVectorized = true, patternsearch checks that the objective and any nonlinear
constraint functions give outputs of the correct shape for vectorized calculations, regardless of the
setting of the UseCompletePoll or UseCompleteSearch options.

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be
vectorized in order for the algorithm to compute in a vectorized manner.

Note Write your vectorized objective function or nonlinear constraint function to accept a matrix
with an arbitrary number of points. patternsearch sometimes evaluates a single point even during
a vectorized calculation.

Vectorized Objective Function

A vectorized objective function accepts a matrix as input and generates a vector of function values,
where each function value corresponds to one row or column of the input matrix. patternsearch
resolves the ambiguity in whether the rows or columns of the matrix represent the points of a pattern
as follows. Suppose the input matrix has m rows and n columns:

+ If the initial point x0 is a column vector of size m, the objective function takes each column of the
matrix as a point in the pattern and returns a row vector of size n.

» If the initial point x0 is a row vector of size n, the objective function takes each row of the matrix
as a point in the pattern and returns a column vector of size m.

» If the initial point x0 is a scalar, patternsearch assumes that x0 is a row vector. Therefore, the
input matrix has one column (n = 1, the input matrix is a vector), and each entry of the matrix
represents one row for the objective function to evaluate. The output of the objective function in
this case is a column vector of size m.

Pictorially, the matrix and calculation are represented by the following figure.
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5-78
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Structure of Vectorized Functions
For example, suppose the objective function is
f(x) = x‘lL + x% - 4x% - ZX% + 3x1 — x2/2.
If the initial vector x0 is a column vector, such as [0;0], a function for vectorized evaluation is

function f = vectorizedc(x)

f = x(1,:).74+x(2,:).74-4*%x(1,:).72-2*%x(2,:).72 ...
+3*x(1,:)-.5%x(2,:);

If the initial vector x0 is a row vector, such as [0, 0], a function for vectorized evaluation is

function f = vectorizedr(x)

f=x(:,1).%4+x(:,2).74-4*%x(:,1).72-2*%x(:,2).72 ...
+3*x(:,1)-.5%x(:,2);

Tip If you want to use the same objective (fitness) function for both pattern search and genetic
algorithm, write your function to have the points represented by row vectors, and write x0 as a row
vector. The genetic algorithm always takes individuals as the rows of a matrix. This was a design
decision—the genetic algorithm does not require a user-supplied population, so needs to have a
default format.




Vectorize the Objective and Constraint Functions

To minimize vectorizedc, enter the following commands:
options=optimoptions('patternsearch', 'UseVectorized', true, 'UseCompletePoll', true);
?S?LSéﬁiépatternsearch(@vectorizedc,xe,...

(1,01,01,01,01,01,[1,0options)
MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance.

X =
-1.5737
1.0575
fval =
-10.0088

Vectorized Constraint Functions

Only nonlinear constraints need to be vectorized; bounds and linear constraints are handled
automatically. If there are nonlinear constraints, the objective function and the nonlinear constraints
all need to be vectorized in order for the algorithm to compute in a vectorized manner.

The same considerations hold for constraint functions as for ohjective functions: the initial point x0
determines the type of points (row or column vectors) in the poll or search. If the initial point is a row
vector of size k, the matrix x passed to the constraint function has k columns. Similarly, if the initial
point is a column vector of size k, the matrix of poll or search points has k rows. The figure “Structure
of Vectorized Functions” on page 5-78 may make this clear. If the initial point is a scalar,
patternsearch assumes that it is a row vector.

Your nonlinear constraint function returns two matrices, one for inequality constraints, and one for
equality constraints. Suppose there are n, nonlinear inequality constraints and n, nonlinear equality
constraints. For row vector x0, the constraint matrices have n. and n, columns respectively, and the
number of rows is the same as in the input matrix. Similarly, for a column vector x0, the constraint
matrices have n, and n,,, rows respectively, and the number of columns is the same as in the input
matrix. In figure “Structure of Vectorized Functions” on page 5-78, “Results” includes both n, and

Neeg-

Example of Vectorized Objective and Constraints

Suppose that the nonlinear constraints are

X x5 . .
Xy + T =< 1 (the interior of an ellipse),
X9 = cosh(xq) — 1.
Write a function for these constraints for row-form x0 as follows:
function [c ceq] = ellipsecosh(x)
c(:,1)=x(:,1).72/9+x(:,2).72/4-1;

c(:,2)=cosh(x(:,1))-x(:,2)-1;
ceq=[];
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Minimize vectorizedr (defined in “Vectorized Objective Function” on page 5-77) subject to the
constraints ellipsecosh:

x0=[0,01];
options = optimoptions('patternsearch', 'UseVectorized', true, 'UseCompletePoll’', true);

[x,fval] = patternsearch(@vectorizedr,x0,...
[1,01,01,01,[1,[1,@ellipsecosh,options)

MATLAB returns the following output:

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

X =
-1.3516 1.0612

fval =
-9.5394

See Also

More About

. “Optimize an ODE in Parallel” on page 5-81
. “Compute Objective Functions” on page 2-2
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Optimize an ODE in Parallel

This example shows how to optimize parameters of an ODE.

It also shows how to avoid computing the objective and nonlinear constraint function twice when the
ODE solution returns both. The example compares patternsearch and ga in terms of time to run
the solver and the quality of the solutions.

You need a Parallel Computing Toolbox license to use parallel computing.

Step 1. Define the problem.

The problem is to change the position and angle of a cannon to fire a projectile as far as possible
beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is
too close to the wall, it has to fire at too steep an angle, and the projectile does not travel far enough.
If the cannon is too far from the wall, the projectile does not travel far enough either.

Air resistance slows the projectile. The resisting force is proportional to the square of the velocity,
with proportionality constant 0.02. Gravity acts on the projectile, accelerating it downward with
constant 9.81 m/s%. Therefore, the equations of motion for the trajectory x(t) are

dzx(t)
dt?

= —0.02[lv(t)|v(t) — (0,9.81),

where v(t) = dx(t)/dt.

The initial position x0 and initial velocity xp0 are 2-D vectors. However, the initial height x0(2) is 0,
so the initial position depends only on the scalar x0(1). And the initial velocity xp® has magnitude
300 (the muzzle velocity), so depends only on the initial angle, a scalar. For an initial angle th,

xpO = 300*(cos(th),sin(th)). Therefore, the optimization problem depends only on two scalars,
so it is a 2-D problem. Use the horizontal distance and the angle as the decision variables.

Step 2. Formulate the ODE model.

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory
vector (x;(t),x,(t)) with its time derivative (x';(t),x'5(t)) to form a 4-D trajectory vector. In terms of this
augmented vector, the differential equation becomes
x3(t)
X4(t)
- .02||(X3(t), X4(t))||X3(t)
—.02[(x3(t), x4(t))|Ix4(t) — 9.81

%x(t) -

Write the differential equation as a function file, and save it on your MATLAB path.

function f = cannonfodder(t,x)

(3);x(4);x(3);x(4)]; % Initial, gets f(1l) and f(2) correct
norm(x(3:4)) * .02; % Norm of the velocity times constant
(3)*nrm; % Horizontal acceleration

(4)*nrm - 9.81; % Vertical acceleration

[x

f =
nrm
T(3)
t(4)

-X
-X
Visualize the solution of the ODE starting 30 m from the wall at an angle of pi/3.
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Code for generating the figure

x0 = [-30;0;300*cos(pi/3);300*sin(pi/3)];
sol = oded45(@cannonfodder,[0,10],x0);

5 Find the time when the projectile lands

zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot

xs = deval(sol,t,1); interpolated x values
ys = deval(sol,t,2);

interpolated y values
plot(xs,ys)
hold on

plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')

[
“©
[

“©

legend('Trajectory', 'Wall', 'Location', 'NW")
ylim([0 120])
hold off

Step 3. Solve using patternsearch.

The problem is to find initial position x0(1) and initial angle x0(2) to maximize the distance from
the wall the projectile lands. Because this is a maximization problem, minimize the negative of the
distance (see “Maximizing vs. Minimizing” on page 2-5).

guess, and options.

To use patternsearch to solve this problem, you must provide the objective, constraint, initial
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These two files are the objective and constraint functions. Copy them to a folder on your MATLAB
path.

function f = cannonobjective(x)
X0 = [x(1);0;300*%cos(x(2));300*sin(x(2))]1;

sol = oded5(@cannonfodder,[0,15],x0);

% Find the time t when y 2(t) = 0

zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
% Then find the x-position at that time

f = deval(sol,zerofnd,1);

.f:

-f; % take negative of distance for maximization

function [c,ceq] = cannonconstraint(x)

ceq = [];
X0 = [x(1);0;300*cos(x(2));300*sin(x(2))];

sol = oded5(@cannonfodder,[0,15],x0);

if sol.y(l,end) <= 0 % Projectile never reaches wall
c =20 - sol.y(2,end);
else
% Find when the projectile crosses x = 0
zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(2),sol.x(end)]);
% Then find the height there, and subtract from 20
c = 20 - deval(sol,zerofnd,2);
end

Notice that the objective and constraint functions set their input variable x0 to a 4-D initial point for
the ODE solver. The ODE solver does not stop if the projectile hits the wall. Instead, the constraint
function simply becomes positive, indicating an infeasible initial value.

The initial position x0(1) cannot be above 0, and it is futile to have it be below -200. (It should be
near -20 because, with no air resistance, the longest trajectory would start at -20 at an angle pi/4.)
Similarly, the initial angle x0 (2) cannot be below 0, and cannot be above pi/2. Set bounds slightly
away from these initial values:

b = [-200;0.05];
ub = [-1;pi/2-.05];
x0 = [-30,pi/3]; % Initial guess

Set the UseCompletePoll option to true. This gives a higher-quality solution, and enables direct
comparison with parallel processing, because computing in parallel requires this setting.

opts = optimoptions('patternsearch', 'UseCompletePoll’, true);

Call patternsearch to solve the problem.

tic % Time the solution

[xsolution,distance,eflag,outpt] = patternsearch(@cannonobjective,x0,...

[1,[1,11,[1,lb,ub,@cannonconstraint,opts)
toc
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Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

xsolution =

-28.8123 0.6095

distance =

-125.9880

eflag =

1

outpt =
struct with fields:

function: @cannonobjective
problemtype: 'nonlinearconstr'’
pollmethod: 'gpspositivebasis2n'
maxconstraint: 0
searchmethod: []
iterations: 5
funccount: 269
meshsize: 8.9125e-07
rngstate: [1x1 struct]
message: 'Optimization terminated: mesh size less than options.MeshTolerance« and cons

Elapsed time is 0.792152 seconds.

Starting the projectile about 29 m from the wall at an angle 0.6095 radian results in the farthest
distance, about 126 m. The reported distance is negative because the objective function is the
negative of the distance to the wall.

Visualize the solution.
x0 = [xsolution(1);0;300*cos(xsolution(2));300*sin(xsolution(2))];

sol = ode45(@cannonfodder,[0,15],x0);

% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
XS deval(sol,t,1); % Interpolated x values

ys = deval(sol,t,2); % Interpolated y values
plot(xs,ys)

hold on

plot([0,0],[0,20],'k') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')
legend('Trajectory', 'Wall', 'Location', 'NW")
ylim([0® 701)

hold off
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Step 4. Avoid calling the expensive subroutine twice.

Both the objective and nonlinear constraint function call the ODE solver to calculate their values. Use

the technique in “Objective and Nonlinear Constraints in the Same Function” to avoid calling the

solver twice. The runcannon file implements this technique. Copy this file to a folder on your
MATLAB path.

function [x,f,eflag,outpt]

runcannon(x0,opts)

if nargin == 1 % No options supplied
opts = [1;
end
xLast = []; % Last place ode solver was called
sol = []; % ODE solution structure

fun = @bjfun; % The objective function, nested below

cfun = @constr; % The constraint function,
[-200;0.05];

[-1;pi/2-.05];

nested below
1b
b

% Call patternsearch
[

x, f,eflag,outpt] = patternsearch(fun,x0,[],[]1,[]1,[],lb,ub,cfun,opts);
function y = objfun(x)

if ~isequal(x,xLast) % Check if computation is necessary
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x0 = [x(1);0;300*cos(x(2));300*sin(x(2))];
sol = ode45(@cannonfodder,[0,15],x0);
xLast = x;
end
% Now compute objective function
% First find when the projectile hits the ground
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
Then compute the x-position at that time
deval(sol,zerofnd,1);
-y; % take negative of distance

o°

< <

end

function [c,ceq] = constr(x)
ceq = [];
if ~isequal(x,xLast) % Check if computation is necessary
X0 = [x(1);0;300*%cos(x(2));300*sin(x(2))]1;
sol = oded5(@cannonfodder,[0,15],x0);
xLast = Xx;
end
% Now compute constraint functions
% First find when the projectile crosses x = 0
zerofnd = fzero(@(r)deval(sol,r,1),[sol.x(1),sol.x(end)]);
% Then find the height there, and subtract from 20
c = 20 - deval(sol,zerofnd,?2);
end

end

Reinitialize the problem and time the call to runcannon.

x0 = [-30;pi/3];

tic

[xsolution,distance,eflag,outpt] = runcannon(x0@,opts);
toc

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.
Elapsed time is 0.670715 seconds.

The solver ran faster than before. If you examine the solution, you see that the output is identical.
Step 5. Compute in parallel.

Try to save more time by computing in parallel. Begin by opening a parallel pool of workers.
parpool

Starting parpool using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ans =
ProcessPool with properties:
Connected: true
NumWorkers: 6
Cluster: local

AttachedFiles: {}
AutoAddClientPath: true
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IdleTimeout: 30 minutes (30 minutes remaining)
SpmdEnabled: true

Set the options to use parallel computing, and rerun the solver.

opts = optimoptions('patternsearch',opts, 'UseParallel’, true);
x0 = [-30;pi/3];

tic

[xsolution,distance,eflag,outpt] = runcannon(x0@,opts);

toc

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.
Elapsed time is 1.894515 seconds.

In this case, parallel computing was slower. If you examine the solution, you see that the output is
identical.

Step 6. Compare with the genetic algorithm.

You can also try to solve the problem using the genetic algorithm. However, the genetic algorithm is
usually slower and less reliable.

As explained in “Objective and Nonlinear Constraints in the Same Function”, you cannot save time

when using ga by the nested function technique used by patternsearch in Step 4. Instead, call ga

in parallel by setting the appropriate options.

options = optimoptions('ga’', 'UseParallel’, true);

rng default % For reproducibility

tic % Time the solution

[xsolution,distance,eflag,outpt] = ga(@cannonobjective,2,...
[1,01,[1,[],lb,ub,@cannonconstraint,options)

toc

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

xsolution =

-37.6217 0.4926

distance =

-122.2181

eflag =

1

outpt =
struct with fields:

problemtype: 'nonlinearconstr'
rngstate: [1x1 struct]
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generations: 4
funccount: 9874

message: 'Optimization terminated: average change in the fitness value less than optio
maxconstraint: 0

hybridflag: []
Elapsed time is 12.529131 seconds.
The ga solution is not as good as the patternsearch solution: 122 m versus 126 m. ga takes more

time: about 12 s versus under 2 s; patternsearch takes even less time in serial and nested, less
than 1 s. Running ga serially takes even longer, about 30 s in one test run.

See Also

Related Examples

. “Objective and Nonlinear Constraints in the Same Function”
More About

. “Parallel Computing”

. “Surrogate Optimization with Nonlinear Constraint” on page 10-41
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Optimization of Stochastic Objective Function

This example shows how to find a minimum of a stochastic objective function using patternsearch.
It also shows how Optimization Toolbox™ solvers are not suitable for this type of problem. The
example uses a simple 2-dimensional objective function that is then perturbed by noise.

Initialization

X0 = [2.5 -2.5]; % Starting point.
LB = [-5 -5]; % Lower bound
UB = [5 51; % Upper bound

range = [LB(1) UB(1l); LB(2) UB(2)];

Objfcn = @smoothFcn; % Handle to the objective function.
% Plot the smooth objective function

fig = figure('Color','w');

showSmoothFcn(0bjfcn, range);

hold on;

title('Smooth objective function');

ph = [];

ph(1l) = plot3(X0(1),X0(2),0bjfcn(X0)+30, 'or', 'MarkerSize',10, 'MarkerFaceColor','r');
hold off;

ax = gca;

ax.CameraPosition = [-31.0391 -85.2792 -281.4265];
ax.CameraTarget = [0 0 -50];

ax.CameraViewAngle = 6.7937;

% Add legend information

legendLabels = {'Start point'};

lh = legend(ph, legendLabels, 'Location', 'SouthEast');

lp = lh.Position;

lh.Position = [1-1p(3)-0.005 0.005 1p(3) 1p(4)];
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Smooth objective function
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50
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Run fmincon on a Smooth Objective Function

The objective function is smooth (twice continuously differentiable). Solve the optimization problem
using the Optimization Toolbox fmincon solver. fmincon finds a constrained minimum of a function
of several variables. This function has a unique minimum at the point x* = [-5,-5] where it has a
value f(x*) = -250.

Set options to return iterative display.

options = optimoptions(@fmincon, 'Algorithm', 'interior-point', 'Display', 'iter');
[Xop,Fop] = fmincon(0Objfcn,X0,[1,[1,[1,[1,LB,UB,[],options)

figure(fig);
hold on;
First-order Norm of
Iter F-count f(x) Feasibility optimality step
0 3 -1.062500e+01 0.000e+00 2.004e+01
1 6 -1.578420e+02 0.000e+00 5.478e+01 6.734e+00
2 9 -2.491310e+02 0.000e+00 6.672e+01 1.236e+00
3 12 -2.497554e+02 0.000e+00 2.397e-01 6.310e-03
4 15 -2.499986e+02 0.000e+00 5.065e-02 8.016e-03
5 18 -2.499996e+02 0.000e+00 9.632e-05 3.367e-05
6 21 -2.500000e+02 0.000e+00 1.502e-04 6.867e-06
7 24 -2.500000e+02 0.000e+00 1.159e-06 6.920e-08

Local minimum found that satisfies the constraints.
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Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Xop =

-5.0000 -5.0000

Fop =

-250.0000

Plot the final point

ph(2) = plot3(Xop(1l),Xop(2),Fop,'dm', 'MarkerSize',10, 'MarkerFaceColor','m');
% Add a legend to plot

legendLabels = [legendLabels, '|fmincon| solution'];

lh = legend(ph,legendLabels, 'Location', 'SouthEast');

lp = lh.Position;

lh.Position = [1-1p(3)-0.005 0.005 1p(3) 1p(4)];

hold off;

Smooth objective function

150
100

a0

-100
-150

=200

250 P

| l _q
-0 0 55 ® Start point
[fmincon| solution

Stochastic Objective Function

Now perturb the objective function by adding random noise.
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rng(0, 'twister') % Reset the global random number generator
peaknoise = 4.5;

Objfcn = @(x) smoothFcn(x,peaknoise); % Handle to the objective function.
% Plot the objective function (non-smooth)

fig = figure('Color', 'w');

showSmoothFcn(0bjfcn, range);

title('Stochastic objective function')

ax = gca;

ax.CameraPosition = [-31.0391 -85.2792 -281.4265];
ax.CameraTarget = [0 0 -50];

ax.CameraViewAngle = 6.7937;

Stochastic objective function

150

-250 7

-300

[ T 5
. 0 55

Run fmincon on a Stochastic Objective Function

The perturbed objective function is stochastic and not smooth. fmincon is a general constrained
optimization solver which finds a local minimum using derivatives of the objective function. If you do
not provide the first derivatives of the objective function, fmincon uses finite differences to
approximate the derivatives. In this example, the objective function is random, so finite difference
estimates derivatives hence can be unreliable. fmincon can potentially stop at a point that is not a
minimum. This may happen because the optimal conditions seems to be satisfied at the final point
because of noise, or fmincon could not make further progress.

[Xop,Fop] = fmincon(Objfcn,X0,[1,[1,[1,[]1,LB,UB,[],options)

figure(fig);

hold on;

ph = [];

ph(1l) = plot3(X0(1),X0(2),0bjfcn(X0)+30, 'or', 'MarkerSize',10, 'MarkerFaceColor','r');

5-92



Optimization of Stochastic Objective Function

ph(2) = plot3(Xop(1l),Xop(2),Fop, ' 'dm', 'MarkerSize', 10, 'MarkerFaceColor', 'm');

% Add legend to plot
legendLabels = {'Start point','|fmincon| solution'};
lh = legend(ph, legendLabels, 'Location', 'SouthEast');
1lp = lh.Position;

lh.Position

hold off;

Iter F-count

b WNRFEO

3
6
11
20
48
64

[1-1p(3)-0.005 0.005 1p(3) 1p(4)];

f(x)
-1.925772e+01
-7.107849e+01
-8.055890e+01
-8.325315e+01
-8.366302e+01
-8.591081e+01

Feasibility

[cNoNoNoNoNO]

.000e+00
.000e+00
.000e+00
.000e+00
.000e+00
.000e+00

First-order
optimality

HF R NNNN

Local minimum possible. Constraints satisfied.

.126e+08
.623e+08
.401e+08
.348e+07
.762e+08
.569e+08

wWwkEF= WwWo

fmincon stopped because the size of the current step is less

the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Xop

Fop

-85

.9628

.9108

2.6673

Norm of
step

.873e+00
.715e-01
.047e-01
.593e-07
.111e-10

than
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Stochastic objective function
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Run patternsearch

Now minimize the stochastic objective function using the Global Optimization Toolbox
patternsearch solver. Pattern search optimization techniques are a class of direct search methods
for optimization. A pattern search algorithm does not use derivatives of the objective function to find
an optimal point.

PSoptions = optimoptions(@patternsearch, 'Display’', 'iter');

[Xps,Fps] = patternsearch(0Objfcn,X0,[1,[]1,[1,[]1,LB,UB,PSoptions)
figure(fig);

hold on;

ph(3) = plot3(Xps(1l),Xps(2),Fps,'dc', 'MarkerSize', 10, 'MarkerFaceColor','c');
% Add legend to plot

legendLabels = [legendLabels, 'Pattern Search solution'];

lh = legend(ph, legendLabels, 'Location', 'SouthEast');

lp = lh.Position;

lh.Position = [1-1p(3)-0.005 0.005 1p(3) 1p(4)];

hold off
Iter Func-count f(x) MeshSize Method
0 1 -7.20766 1
1 3 -34.7227 2 Successful Poll
2 3 -34.7227 1 Refine Mesh
3 5 -34.7227 0.5 Refine Mesh
4 8 -96.0847 1 Successful Poll
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Iter
31
32

Func-count

95
99

-96.0847

-132.
-132.
-132.
-197.
-197.
-197.
-241.
-241.
-241.
-241.
-241.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.
-242.

888
888
888
689
689
689
344
344
344
344
344
761
761
761
761
761
761
761
761
761
761
761
761
761
761

f(x)

-242.
-242.

761
761

(SO NE SRV NoNoNoN O]

1
9

0.007812
0.003906
0.001953
.0009766
.0004883
.0002441
.0001221
.104e-05
.052e-05
.526e-05
.629%e-06
.815e-06

MeshSize
.907e-06
.537e-07

Refine Mesh
Successful Poll
Refine Mesh
Refine Mesh
Successful Poll
Refine Mesh
Refine Mesh
Successful Poll
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Successful Poll
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh
Refine Mesh

Method
Refine Mesh
Refine Mesh

Optimization terminated: mesh size less than options.MeshTolerance.

Xps =

-4

Fps

-242

.9844

.7611

-4.5000
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Stochastic objective function

180

200 @ Start point
- T &  |mincon| solution
-5 0 8 Pattern Search solution

Pattern search is not as strongly affected by random noise in the objective function. Pattern search
requires only function values and not the derivatives, hence noise (of some uniform kind) may not
affect it. However, pattern search requires more function evaluation to find the true minimum than
derivative based algorithms, a cost for not using the derivatives.

See Also

More About

. “Global Optimization Toolbox Solver Characteristics” on page 1-31
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* “Optimize Nonsmooth Function Using patternsearch, Problem-Based” on page 6-2
* “Constrained Minimization Using Pattern Search, Problem-Based” on page 6-4

+ “Effects of Pattern Search Options, Problem-Based” on page 6-10

* “Search and Poll, Problem-Based” on page 6-16
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Optimize Nonsmooth Function Using patternsearch, Problem-
Based

This example shows how to minimize a nonsmooth function using direct search in the problem-based
approach. The function to minimize, ps_example(x), is included with Global Optimization Toolbox
software.

Plot the objective function.

fsurf(@(x,y)reshape(ps_example([x(:),y(:)]1),size(x)),...
[-6 2 -4 4],"LineStyle","none", "MeshDensity",300)

colormap 'jet'

view(-26,43)

xlabel("x(1)")

ylabel("x(2)")

title("ps\ example(x)")

ps_example(x)

Create a 2-D optimization variable x. The ps_example function expects the variable to be a row
vector, so specify x as a 2-element row vector.

x = optimvar("x",1,2);

To use ps_example as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@ps_example, x);
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Create an optimization problem with objective function ps_example.

prob = optimproblem("Objective", fun);

Specify the initial point x0 as a structure with field x taking the value [2.1 1.7].
x0.x = [2.1 1.7]1;

Solve the problem, specifying the patternsearch solver.

[sol,fval] = solve(prob,x0,"Solver","patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

sol = struct with fields:
X: [-4.7124 -7.6294e-07]

fval = -2.0000

patternsearch finds a better solution (lower function value) than the default fminunc solver,
which is not recommended for minimizing nonsmooth functions.

[solfminunc, fvalfminunc] = solve(prob,x0)
Solving problem using fminunc.
Local minimum possible.

fminunc stopped because it cannot decrease the objective function
along the current search direction.

solfminunc = struct with fields:
x: [1.9240 8.8818e-16]

fvalfminunc = 2.9161

See Also
patternsearch | fcn2optimexpr | solve

Related Examples
. “Direct Search”
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Constrained Minimization Using Pattern Search, Problem-
Based

6-4

This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using pattern search in the problem-based approach. For a solver-based version of this
problem, see “Constrained Minimization Using Pattern Search, Solver-Based” on page 5-12.

Constrained Minimization Problem

For this problem, the objective function to minimize is a simple function of 2-D variables X and Y:
camxy = @(X,Y)(4 - 2.1.*%X.72 + X."4./3) <X "2 + X XY + (-4 + 4.*Y."2).*Y."2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1] on page 6-0

Additionally, the problem has nonlinear constraints and bounds.

Xx(1)*x(2) + x(1) - x(2) + 1.5 <= 0 (nonlinear constraint)
10 - x(1)*x(2) <=0 (nonlinear constraint)
0 <= x(1) <=1 (bound)
0 <= x(2) <= 13 (bound)

Plot the nonlinear constraint region on a surface plot of the objective function. The constraints limit
the solution to the small region above both red curves.

x1 = linspace(0,1);

yl = (-x1 - 1.5)./(x1 - 1);

y2 = 10./x1;

[X,Y] = meshgrid(x1,linspace(0,13));

Z = camxy(X,Y);
surf(X,Y,Z,"LineStyle", "none")
hold on

z1 = camxy(x1l,yl);

z2 = camxy(x1l,y2);
plot3(x1,yl,z1,"'r-"',x1,y2,22,'r-")
xlim([0 11)

ylim([0 131])
zlim([0,max(Z,[1,"all")])

hold off
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x 104

Create Optimization Variables, Problem, and Constraints

To set up this problem, create optimization variables x and y. Set the bounds as you create the
variables.

X
y

optimvar("x","LowerBound", 0, "UpperBound",1);
optimvar("y","LowerBound",Q, "UpperBound",13);

Create the objective as an optimization expression.

cam = camxy(x,y);

Create an optimization problem with this objective function.

prob = optimproblem("Objective", cam);

Create the two nonlinear inequality constraints, and include them in the problem.

prob.Constraints.cons

1 *y + x -y + 1.5 <=0;
prob.Constraints.cons2

= X
= 10 - x*y <= 0;
Review the problem.
show(prob)
OptimizationProblem :

Solve for:



6 Problem-Based Direct Search

6-6

X,y
minimize :

(((((4 - (2.1 .* x.72)) + (x.™4 ./ 3)) .* x.72) + (x .*y)) + (((-4)
+ (4 % y."2)) .* y."2))

subject to consl:
((((x .*y) +x)-y)+15) <=0

subject to cons2:
(10 - (x .*y)) <=0

variable bounds:
0 <=x<=1

0 <=y <=13
Set Initial Point and Solve

Set the initial point as a structure with field x equal to 0.5 and y equal to 0.5.

X0.Xx
X0.y

0.5;
0.5;

Solve the problem specifying the patternsearch solver.
[sol,fval] = solve(prob,x0,"Solver", "patternsearch")

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

sol = struct with fields:
x: 0.8122
y: 12.3122

fval = 9.1324e+04

View the solution point.
disp(sol.x)
0.8122

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
psplotbestf plots the best objective function value at every iteration, and the plot function
psplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter"'.
options = optimoptions(@patternsearch,...

"PlotFcn", {@psplotbestf,@psplotmaxconstr}, ...

"Display","iter");

Run the solver, including the options argument.
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[sol,fval] = solve(prob,x0,"Solver", "patternsearch","Options",options)

Solving problem using patternsearch.

Max
Iter Func-count f(x) Constraint MeshSize Method
0 1 0.373958 9.75 0.9086
1 18 113581 1.617e-10 0.001 Increase penalty
2 148 92267 0 le-05 Increase penalty
3 374 91333.2 0 le-07 Increase penalty
4 639 91324 0 le-09 Increase penalty

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

% 10% Best Function Value: 91324
10
p . . |
o |
™
-
5
g 5
=
=
L
{] i i i i i i i i
(i} 0.5 1 1.5 2 25 3 a5 4
lteration

7 Max Constraint Violation: 0

Max Constraint Viclation
o

Iteration

struct with fields:
0.8122
12.3122

sol

< X 1

fval = 9.1324e+04

Nonlinear constraints cause patternsearch to solve many subproblems at each iteration. As shown
in both the plots and the iterative display, the solution process has few iterations. However, the
Func-count column in the iterative display shows many function evaluations per iteration. Both the
plots and the iterative display show that the initial point is infeasible, and that the objective function
is low at the initial point. During the solution process, the objective function value initially increases,
then decreases to its final value.
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Unsupported Functions

If your objective or nonlinear constraint functions are not “Supported Operations for Optimization
Variables and Expressions”, use fcn2optimexpr to convert them to a form suitable for the problem-
based approach. For example, suppose that instead of the constraint xy = 10 you have the constraint
L1(x) + I1(y) = 10, where I;(x) is the modified Bessel function besseli(1, x). (The Bessel functions

are not supported functions.) Create this constraint using fcn2optimexpr as follows. First create an
optimization expression for I1(x) + I1(y).

bfun = fcn2optimexpr(@(t,u)besseli(l,t) + besseli(1l,u),x,y);
Next, replace the constraint cons2 with the constraint bfun >= 10.
prob.Constraints.cons2 = bfun >= 10;

Solve the problem. The solution differs because the constraint region is different.

[sol2,fval2] = solve(prob,x0,"Solver","patternsearch","Options",options)

Solving problem using patternsearch.

Max
Iter Func-count f(x) Constraint MeshSize Method
0 1 0.373958 9.484 0.9307
1 18 113581 0 0.001 Increase penalty
2 78 962.841 0 le-05 Increase penalty
3 394 960.942 0 le-07 Increase penalty
4 531 960.94 0 8.511le-15 Update multipliers

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.
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10t Best Function Value: 960.94
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sol2 = struct with fields:

x: 0.4998
y: 3.9981

fval2 = 960.9401

References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier

Science Ltd., Amsterdam, 1978.

See Also
patternsearch | solve

Related Examples

. “Direct Search”
. “Constrained Minimization Using ga, Problem-Based” on page 8-19
. “Constrained Minimization Using Pattern Search, Solver-Based” on page 5-12
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Effects of Pattern Search Options, Problem-Based

6-10

This example shows the effects of some options for pattern search in the problem-based approach.
The options include plotting, stopping criteria, and other algorithmic controls for speeding a solution.

Set Up a Problem for Pattern Search

The problem to minimize is a quadratic function of six variables subject to linear equality and
inequality constraints. The objective function, lincontest7, is included with Global Optimization
Toolbox.

type lincontest?

function y = lincontest7(x)

%LINCONTEST7 objective function.

y = LINCONTEST7(X) evaluates y for the input X. Make sure that x is a column
vector, whereas objective function gets a row vector.

o° o°

o°

Copyright 2003-2017 The MathWorks, Inc.
X = X';

%Define a quadratic problem in terms of H and f

H=[36 17 19 12 8 15;

17 33 18 11 7 14;

19 18 43 13 8 16;

12 11 13 18 6 11;

8 7 8 6 9 8;

15 14 16 11 8 29];
f=1201521 18 29 24 ]';

y = 0.5%x"*H*x + f'*x;

Create a six-element optimization variable x as a row vector.

x = optimvar("x",1,6);

Create an optimization problem with the objective function lincontest7(x).
prob = optimproblem("Objective",lincontest7(x));

Specify an initial point for the optimization.

x0.x =[210910];

Create linear constraint matrices for the constraints Aineq*x' <= Bineq and Aeg*x' = Beq. You
need to use x' in these constraints because x is a row vector.

Aineq = [-8 73 -4 90 ];

Bineq = [7];

Aeq=[718333;505158;267118; 10000 0];
Beq = [84 62 65 1]';

Aineg*x' <= Bineq;

prob.Constraints.Aineq =
= Aeg*x' == Beq;

prob.Constraints.Aeq

Run the patternsearch solver, and note the number of iterations and function evaluations required
to reach the solution.
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[sol,Fval,eflag,output] = solve(prob,x0,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

fprintf('The number of iterations is: %d\n', output.iterations);

The number of iterations is: 242

fprintf('The number of function evaluations is: %d\n', output.funccount);
The number of function evaluations is: 1927

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: 2189.03

Add Visualization

Monitor the optimization process by specifying options that select two plot functions. The plot
function psplotbestf plots the best objective function value at every iteration, and the plot function
psplotfuncount plots the number of times the objective function is evaluated at each iteration. Set
these two plot functions in a cell array.

opts = optimoptions(@patternsearch,"PlotFcn",{@psplotbestf,@psplotfuncount});
Run the patternsearch solver, including the opts argument.

[sol2,Fval2,eflag2,output2] = solve(prob,x0,"Solver","patternsearch",...
"Options",opts);

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 2189.03

21898
% 21806 |-
E m
=
521894
-'E: -
5
T 21892 |
2139 1 1 1 1 J
0 50 100 150 200 250
= lteration
E Total Function Evaluations: 1927
=157 :t‘n ¢ o4
[ak]}
o Wﬂ' ¢ ¢ & & &
[45]
= 10
& & ¢
= +H»
o |
g 5| Moo o ‘&ﬁﬂﬂttt G0 46 00
Lg ¢ W OR O ¢ * tt‘ tti*t
& . AR U & U O , , ,
L% 0 50 100 150 200 250
lteration

Mesh Options

Pattern search involves evaluating the objective function at points in a mesh. The size of the mesh can
influence the speed of the solution. You can control the size of the mesh by setting options.

Initial Mesh Size

The mesh at each iteration is the span of a set of search directions that are added to the current
point, scaled by the current mesh size. The solver starts with an initial mesh size of 1 by default. To
start with the initial mesh size of 1/2, set the InitialMeshSize option. This can save an iteration
and several function evaluations when the initial point is good relative to a mesh of size 1.

opts = optimoptions(opts,'InitialMeshSize',1/2);
Mesh Scaling

You can scale the mesh to improve the minimization of a poorly scaled optimization problem. Scaling
rotates the pattern by some degree and scales along the search directions. The ScaleMesh option is
on (true) by default, but you can turn it off if the problem is well scaled. In general, if the problem is
poorly scaled, setting this option to true can reduce the number of function evaluations. For this
problem, set ScaleMesh to false, because lincontest7 is a well-scaled objective function.

opts = optimoptions(opts, 'ScaleMesh', false);
Mesh Accelerator

Direct search methods require many function evaluations compared to derivative-based optimization
methods. The pattern search algorithm can quickly find the neighborhood of an optimum point, but
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can be slow in detecting the minimum itself. The patternsearch solver can reduce the number of
function evaluations by using an accelerator. When the accelerator is on (opts.AccelerateMesh =
true), the solver contracts the mesh size rapidly after reaching a minimum mesh size. This option is
recommended only for smooth problems; in other types of problems, you can lose some accuracy. The
AccelerateMesh option is off (false) by default. For this problem, set AccelerateMesh to true
because the objective function is smooth.

opts = optimoptions(opts, 'AccelerateMesh’,true);
Run the patternsearch solver.

[sol3,Fval3,eflag3,output3] = solve(prob,x0,"Solver","patternsearch",...
"Options",opts);

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

Best Function Value: 2189.03
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lteration

fprintf('The number of iterations is: %d\n', output3.iterations);

The number of iterations is: 197

fprintf('The number of function evaluations is: %d\n', output3.funccount);
The number of function evaluations is: 1302

fprintf('The best function value found is: %g\n', Fval3);

The best function value found is: 2189.03
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The mesh option settings reduce the number of iterations and the number of function evaluations,
and with no apparent loss of accuracy.

Stopping Criteria and Tolerances

MeshTolerance is a tolerance on the mesh size. If the mesh size is less than MeshTolerance, the
solver stops. StepTolerance is the minimum tolerance on the change in the current point to the
next point. FunctionTolerance is the minimum tolerance on the change in the function value from
the current point to the next point.

Set the MeshTolerance to 1le-7, which is 10 times smaller than the default value. This setting can
increase the number of function evaluations and iterations, and can lead to a more accurate solution.

opts.MeshTolerance = le-7;

Search Methods in Pattern Search

The pattern search algorithm can use an additional search method at every iteration, based on the
value of the SearchFcn option. When you specify a search method using SearchFcn,
patternsearch performs the specified search first, before the mesh search. If the search method is
successful, patternsearch skips the mesh search, commonly called the poll function, for that
iteration. If the search method is unsuccessful in improving the current point, patternsearch
performs the mesh search.

You can specify different search methods for SearchFcn, including searchga and
searchneldermead, which are optimization algorithms. Use these two search methods only for the
first iteration, which is the default setting. Using either of these methods at every iteration might not
improve the results and can be computationally expensive. However, you can use the searchlhs
method, which generates Latin hypercube points, at every iteration or possibly every 10 iterations.

Other choices for search methods include poll methods such as positive basis N+1 or positive basis
2N. A recommended strategy is to use positive basis N+1 (which requires at most N+1 points to
create a pattern) as a search method and positive basis 2N (which requires 2N points to create a
pattern) as a poll method.

Update the options structure to use positivebasisnpl as the search method. Because positive
basis 2N is the default for the Pol1Fcn option, do not set that option.

opts.SearchFcn = @positivebasisnpl;
Run the patternsearch solver.

[sol4,Fval4,eflag4,outputd] = solve(prob,x0,"Solver","patternsearch",...
"Options",opts);

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 2189.03
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fprintf('The number of iterations is: %d\n', output4.iterations);

The number of iterations is: 67

fprintf('The number of function evaluations is: %d\n', output4.funccount);
The number of function evaluations is: 838

fprintf('The best function value found is: %g\n', Fval4);

The best function value found is: 2189.03

The total number of iterations and function evaluations decreases, even though the mesh tolerance is
smaller than its previous value and is the stopping criterion that halts the solver.

See Also
patternsearch | solve

Related Examples

. “Effects of Pattern Search Options” on page 5-16
. “Search and Poll” on page 5-38

. “Pattern Search Options” on page 15-7
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Search and Poll, Problem-Based

6-16

In addition to polling the mesh points, the pattern search algorithm can perform an optional step at
every iteration, called search. At each iteration, the search step applies another optimization method
to the current point. If this search does not improve the current point, the poll step is performed.

Search Using a Poll Method

The following example illustrates the use of a search method on the problem described in
“Constrained Minimization Using patternsearch and Optimize Live Editor Task” on page 5-65. In this
case, the search method is the MADS Positive Basis 2N poll. For comparison, first run the problem
without a search method.

x = optimvar("x",1,6);
prob = optimproblem("Objective",lincontest7(x));
x0.x =[210910];

Aineq = [-8 7 3 -4 9 0];

bineq = 7;

Aeq =[718333;50-51-58; -2-67119;1-12-23-31;
beq = [84 62 65 1];

prob.Constraints.Aineq = Aineg*x' <= bineq;

prob.Constraints.Aeq = Aeg*x' == beq';

options = optimoptions('patternsearch',...
'PlotFcn',{@psplotbestf,@psplotfuncount});
[x,fval,exitflag,output] = solve(prob,x0,...

"Options",options,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 1919 .49
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To use the MADS Positive Basis 2N poll as a search method, change the SearchFcn option.

rng default % For reproducibility

options.SearchFcn = @MADSPositiveBasis2N;

[x2,fval2,exitflag2,output2] = solve(prob,x0,...
"Options",options,"Solver", "patternsearch");

Solving problem using patternsearch.

Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 1919 .49
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Both optimizations reached the same objective function value. Using the search method reduces the
number of function evaluations and the number of iterations.

table([output.funccount;output2.funccount], [output.iterations;output2.iterations],...
'VariableNames', ["Function Evaluations" "Iterations"],...
'"RowNames', ["Without Search" "With Search"])

ans=2x2 table

Function Evaluations Iterations
Without Search 1462 136
With Search 1283 118

Search Using a Different Solver
patternsearch takes a long time to minimize Rosenbrock's function. The function is
£00 = 1000, = 3)* + (1 = x)?.
Rosenbrock's function is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-

Based”. The minimum of Rosenbrock's function is 0, attained at the point [1, 1]. Because
patternsearch is not efficient at minimizing this function, use a different search method to help.

Create the objective function.
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dejong2fcn = @(x)100*(x(2)-x(1)"2)"2 + (1-x(1))"2;

The default maximum number of iterations for patternsearch with two variables is 200, and the
default maximum number of function evaluations is 4000. Increase these values to
MaxFunctionEvaluations = 5000 and MaxIterations = 2000.

opts = optimoptions("patternsearch","MaxFunctionEvaluations",5000, "MaxIterations",2000);

Run patternsearch starting from [-1.9 2].
x = optimvar("x",1,2);
prob = optimproblem("Objective",dejong2fcn(x));

x0.x = [-1.9,2];
[sol, feval,eflag,output] = solve(prob,x0,...

"Options",opts,"Solver","patternsearch");

Solving problem using patternsearch.
Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.

disp(feval)

0.8560
The optimization did not complete, and the result is not very close to the optimal value of 0.

Set the options to use fminsearch as the search method, using the default number of function
evaluations and iterations.

opts = optimoptions("patternsearch","SearchFcn",@searchneldermead);

Rerun the optimization.

[sol2,feval2,eflag2,output2] = solve(prob,x0, ...

"Options",opts,"Solver","patternsearch");

Solving problem using patternsearch.
Optimization terminated: mesh size less than options.MeshTolerance.

disp(feval2)

4.0686e-10

The results are much better when using this search method. fminsearch is more efficient at getting
close to the minimum of Rosenbrock's function.

See Also
patternsearch | solve

Related Examples
. “Direct Search”
. “Search and Poll” on page 5-38
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“What Is the Genetic Algorithm?” on page 7-2
“Minimize Rastrigin's Function” on page 7-3
“Genetic Algorithm Terminology” on page 7-10
“How the Genetic Algorithm Works” on page 7-12

“Coding and Minimizing a Fitness Function Using the Genetic Algorithm” on page 7-19

“Constrained Minimization Using the Genetic Algorithm” on page 7-24
“Effects of Genetic Algorithm Options” on page 7-29
“Mixed Integer ga Optimization” on page 7-37
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“When to Use a Hybrid Function” on page 7-111
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What Is the Genetic Algorithm?
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The genetic algorithm is a method for solving both constrained and unconstrained optimization
problems that is based on natural selection, the process that drives biological evolution. The genetic
algorithm repeatedly modifies a population of individual solutions. At each step, the genetic algorithm
selects individuals at random from the current population to be parents and uses them to produce the
children for the next generation. Over successive generations, the population "evolves" toward an
optimal solution. You can apply the genetic algorithm to solve a variety of optimization problems that
are not well suited for standard optimization algorithms, including problems in which the objective
function is discontinuous, nondifferentiable, stochastic, or highly nonlinear. The genetic algorithm can
address problems of mixed integer programming, where some components are restricted to be
integer-valued.

The genetic algorithm uses three main types of rules at each step to create the next generation from
the current population:

* Selection rules select the individuals, called parents, that contribute to the population at the next
generation.

* Crossover rules combine two parents to form children for the next generation.

* Mutation rules apply random changes to individual parents to form children.

The genetic algorithm differs from a classical, derivative-based, optimization algorithm in two main
ways, as summarized in the following table.

Classical Algorithm Genetic Algorithm

Generates a single point at each iteration. The Generates a population of points at each
sequence of points approaches an optimal iteration. The best point in the population
solution. approaches an optimal solution.

Selects the next point in the sequence by a Selects the next population by computation which
deterministic computation. uses random number generators.

See Also

More About

. “Genetic Algorithm Terminology” on page 7-10
. “How the Genetic Algorithm Works” on page 7-12
. “Nonlinear Constraint Solver Algorithms” on page 7-53
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Minimize Rastrigin's Function

In this section...

“Rastrigin's Function” on page 7-3
“Minimize Using the Optimize Live Editor Task” on page 7-4
“Minimize at the Command Line” on page 7-8

Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function, a function that is often used to
test the genetic algorithm. The example presents two approaches for minimizing: using the Optimize
Live Editor task and working at the command line.

For two independent variables, Rastrigin's function is defined as
Ras(x) = 20 + x} + x5 — 10(cos2mx; + cos2mxy) .

Global Optimization Toolbox contains the rastriginsfcn.m file, which computes the values of
Rastrigin's function. The following figure shows a plot of Rastrigin's function.

Glabal minimum at [0 0]

As the plot shows, Rastrigin's function has many local minima—the “valleys” in the plot. However, the
function has just one global minimum, which occurs at the point [0 0] in the x-y plane, as indicated by
the vertical line in the plot, where the value of the function is 0. At any local minimum other than [0
0], the value of Rastrigin's function is greater than 0. The farther the local minimum is from the
origin, the larger the value of the function is at that point.

Rastrigin's function is often used to test the genetic algorithm, because its many local minima make it
difficult for standard, gradient-based methods to find the global minimum.

The following contour plot of Rastrigin's function shows the alternating maxima and minima.
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| Loal maxima

Global minimumat [00]

Minimize Using the Optimize Live Editor Task

This section explains how to find the minimum of Rastrigin's function using the genetic algorithm.

Note Because the genetic algorithm uses random number generators, the algorithm returns different
results each time you run it.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

HOME .

| Lmn
W le}s

pt |Live Script

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.
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Optimize O 7

Minimize a function with or without constraints

= Specify problem type

. f .
-‘ 1_0 [ AW l|l II _Il ;]
Objective ; = :
Linear Quadratic Least squares Menlinear Monsmooth

Select an objective type to see example functions

|D Unconstrained | ‘E Lower bounds | ‘E Upper bounds | ‘ Linear inequality

Constraints || . , 1] 1 [ . 1]
|Z Linear equality | ‘ Second-order cnne| ‘ Monlinear | ‘ Intager

Select constraint types to see example formulas

Solver | fmincon - Constrained nonlinear minimization (recommended} \ e

= Select problem data

Objective function | From file v | |:E5rowse...:| |:New...:| (7]

Initial point (x0) | select ¥ |

} Specify solver options

~ Display progress

Text display | Final output v |
Plot [ | Current paint [ |Evaluation count | | Objective value and feasibility | | Objective value
| |Max constraint violation | | Step size [ | Optimality measure

3 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

4 In the new section above the task, enter the following code to define the number of variables and
objective function.

nvar = 2;
fun = @rastriginsfcn;

5 To place these variables into the workspace, run the section by pressing Ctrl+Enter.

6 In the Specify problem type section of the task, click the Objective > Nonlinear button.

7 Select Solver > ga - Genetic algorithm.

8 In the Select problem data section of the task, select Objective function > Function handle
and then choose fun.

9 Select Number of variables > nvar.
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Solver

ga - Genetic algorithm

Select problem data

Objective function

Mumber of variables

Function handle ¥ fun

nvar v

10 In the Display progress section of the task, select the Best fitness plot.

11 To run the solver, click the options button : at the top right of the task window, and select Run
Section. The plot appears in a separate figure window and in the task output area. Note that
your plot might be different from the one shown, because ga is a stochastic algorithm.
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The points at the bottom of the plot denote the best fitness values, while the points above them
denote the averages of the fitness values in each generation. The top of the plot displays the best
and mean values, numerically, in the current generation.

12 To see the solution and fitness function value, look at the top of the task.

Optimize

solution

,|objectiveValue | = Minimize fun using ga solver

13 To view the values of these variables, enter the following code in the section below the task.
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disp(solution)
disp(objectiveValue)
14 Run the section by pressing Ctrl+Enter.

disp(solution)
0.9785 0.9443
disp(objectiveValue)

2.5463

Your values can differ because ga is a stochastic algorithm.

The value shown is not very close to the actual minimum value of Rastrigin's function, which is 0. The
topics “Set Initial Range” on page 7-68, “Setting the Amount of Mutation” on page 7-79, and “Set
Maximum Number of Generations and Stall Generations” on page 7-96 describe ways to achieve a
result that is closer to the actual minimum. Or, you can simply rerun the solver to try to obtain a

better result.

Minimize at the Command Line

To find the minimum of Rastrigin's function at the command line, enter the following code.

rng default % For reproducibility
options = optimoptions('ga', 'PlotFcn', 'gaplotbestf');
[solution,objectiveValue] = ga(@rastriginsfcn,2,...

Best: 2.54629 Mean: 113.977
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Minimize Rastrigin's Function

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
solution =

0.9785 0.9443

objectiveValue =
2.5463

The points at the bottom of the plot denote the best fitness values, while the points above them
denote the averages of the fitness values in each generation. The top of the plot displays the best and
mean values, numerically, in the current generation.

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also

More About

. “Constrained Minimization Using the Genetic Algorithm” on page 7-24
. “Effects of Genetic Algorithm Options” on page 7-29

. “Constrained Minimization Using the Genetic Algorithm” on page 7-24
. “Add Interactive Tasks to a Live Script”
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Genetic Algorithm Terminology
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In this section...

“Fitness Functions” on page 7-10

“Individuals” on page 7-10

“Populations and Generations” on page 7-10
“Diversity” on page 7-10

“Fitness Values and Best Fitness Values” on page 7-11

“Parents and Children” on page 7-11

Fitness Functions

The fitness function is the function you want to optimize. For standard optimization algorithms, this is
known as the objective function. The toolbox software tries to find the minimum of the fitness
function.

Write the fitness function as a file or anonymous function, and pass it as a function handle input
argument to the main genetic algorithm function.

Individuals

An individual is any point to which you can apply the fitness function. The value of the fitness function
for an individual is its score. For example, if the fitness function is

FO, X2, X3) = (2x1 + 1)% + (3xg + 4)* + (x3 — 2)7,

the vector (2, -3, 1), whose length is the number of variables in the problem, is an individual. The
score of the individual (2, -3, 1) is f(2, -3, 1) = 51.

An individual is sometimes referred to as a genome and the vector entries of an individual as genes.

Populations and Generations

A population is an array of individuals. For example, if the size of the population is 100 and the
number of variables in the fitness function is 3, you represent the population by a 100-by-3 matrix.
The same individual can appear more than once in the population. For example, the individual (2, -3,
1) can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of computations on the current population
to produce a new population. Each successive population is called a new generation.

Diversity

Diversity refers to the average distance between individuals in a population. A population has high

diversity if the average distance is large; otherwise it has low diversity. In the following figure, the
population on the left has high diversity, while the population on the right has low diversity.
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Diversity is essential to the genetic algorithm because it enables the algorithm to search a larger
region of the space.

Fitness Values and Best Fitness Values

The fitness value of an individual is the value of the fitness function for that individual. Because the
toolbox software finds the minimum of the fitness function, the best fitness value for a population is
the smallest fitness value for any individual in the population.

Parents and Children

To create the next generation, the genetic algorithm selects certain individuals in the current
population, called parents, and uses them to create individuals in the next generation, called
children. Typically, the algorithm is more likely to select parents that have better fitness values.

See Also

More About

. “What Is the Genetic Algorithm?” on page 7-2
. “How the Genetic Algorithm Works” on page 7-12
. “Nonlinear Constraint Solver Algorithms” on page 7-53
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How the Genetic Algorithm Works

In this section...

“Outline of the Algorithm” on page 7-12

“Initial Population” on page 7-12

“Creating the Next Generation” on page 7-13

“Plots of Later Generations” on page 7-15

“Stopping Conditions for the Algorithm” on page 7-15
“Selection” on page 7-16

“Reproduction Options” on page 7-16

“Mutation and Crossover” on page 7-16

“Integer and Linear Constraints” on page 7-17

Outline of the Algorithm

The following outline summarizes how the genetic algorithm works:

1 The algorithm begins by creating a random initial population.

2 The algorithm then creates a sequence of new populations. At each step, the algorithm uses the
individuals in the current generation to create the next population. To create the new population,
the algorithm performs the following steps:

a Scores each member of the current population by computing its fitness value. These values
are called the raw fitness scores.

b  Scales the raw fitness scores to convert them into a more usable range of values. These
scaled values are called expectation values.

Selects members, called parents, based on their expectation.

d Some of the individuals in the current population that have lower fitness are chosen as elite.
These elite individuals are passed to the next population.

e Produces children from the parents. Children are produced either by making random
changes to a single parent—mutation—or by combining the vector entries of a pair of
parents—crossover.

f  Replaces the current population with the children to form the next generation.

3 The algorithm stops when one of the stopping criteria is met. See “Stopping Conditions for the
Algorithm” on page 7-15.

4 The algorithm takes modified steps for linear and integer constraints. See “Integer and Linear
Constraints” on page 7-17.

5 The algorithm is further modified for nonlinear constraints. See “Nonlinear Constraint Solver
Algorithms” on page 7-53.

Initial Population

The algorithm begins by creating a random initial population, as shown in the following figure.

7-12
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In this example, the initial population contains 20 individuals. Note that all the individuals in the
initial population lie in the upper-right quadrant of the picture, that is, their coordinates lie between 0
and 1. For this example, the InitialPopulationRange optionis [0;1].

If you know approximately where the minimal point for a function lies, you should set
InitialPopulationRange so that the point lies near the middle of that range. For example, if you
believe that the minimal point for Rastrigin's function is near the point [0 0], you could set
InitialPopulationRange to be [-1;1]. However, as this example shows, the genetic algorithm
can find the minimum even with a less than optimal choice for InitialPopulationRange.

Creating the Next Generation

At each step, the genetic algorithm uses the current population to create the children that make up
the next generation. The algorithm selects a group of individuals in the current population, called
parents, who contribute their genes—the entries of their vectors—to their children. The algorithm
usually selects individuals that have better fitness values as parents. You can specify the function that
the algorithm uses to select the parents in the SelectionFcn option. See “Selection Options” on
page 15-30.

The genetic algorithm creates three types of children for the next generation:

* Eliteare the individuals in the current generation with the best fitness values. These individuals
automatically survive to the next generation.

* Crossover are created by combining the vectors of a pair of parents.
* Mutation children are created by introducing random changes, or mutations, to a single parent.

The following schematic diagram illustrates the three types of children.

7-13
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“Mutation and Crossover” on page 7-16 explains how to specify the number of children of each type
that the algorithm generates and the functions it uses to perform crossover and mutation.

The following sections explain how the algorithm creates crossover and mutation children.
Crossover Children

The algorithm creates crossover children by combining pairs of parents in the current population. At
each coordinate of the child vector, the default crossover function randomly selects an entry, or gene,
at the same coordinate from one of the two parents and assigns it to the child. For problems with
linear constraints, the default crossover function creates the child as a random weighted average of
the parents.

Mutation Children

The algorithm creates mutation children by randomly changing the genes of individual parents. By
default, for unconstrained problems the algorithm adds a random vector from a Gaussian distribution
to the parent. For bounded or linearly constrained problems, the child remains feasible.

The following figure shows the children of the initial population, that is, the population at the second
generation, and indicates whether they are elite, crossover, or mutation children.
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Plots of Later Generations
The following figure shows the populations at iterations 60, 80, 95, and 100.
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As the number of generations increases, the individuals in the population get closer together and
approach the minimum point [0 O].

Stopping Conditions for the Algorithm

The genetic algorithm uses the following options to determine when to stop. See the default values
for each option by running opts = optimoptions('ga').

* MaxGenerations — The algorithm stops when the number of generations reaches
MaxGenerations.
* MaxTime — The algorithm stops after running for an amount of time in seconds equal to MaxTime.

* FitnessLimit — The algorithm stops when the value of the fitness function for the best point in
the current population is less than or equal to FitnessLimit.

* MaxStallGenerations — The algorithm stops when the average relative change in the fitness
function value over MaxStallGenerations is less than Function tolerance.

* MaxStallTime — The algorithm stops if there is no improvement in the objective function during
an interval of time in seconds equal to MaxStallTime.

* FunctionTolerance — The algorithm runs until the average relative change in the fitness
function value over MaxStallGenerations is less than Function tolerance.

* ConstraintTolerance — The ConstraintTolerance is not used as stopping criterion. It is
used to determine the feasibility with respect to nonlinear constraints. Also,
max(sqrt(eps),ConstraintTolerance) determines feasibility with respect to linear
constraints.
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7-16

The algorithm stops as soon as any one of these conditions is met.

Selection

The selection function chooses parents for the next generation based on their scaled values from the
fitness scaling function. The scaled fitness values are called the expectation values. An individual can
be selected more than once as a parent, in which case it contributes its genes to more than one child.
The default selection option, @selectionstochunif, lays out a line in which each parent
corresponds to a section of the line of length proportional to its scaled value. The algorithm moves
along the line in steps of equal size. At each step, the algorithm allocates a parent from the section it
lands on.

A more deterministic selection option is @selectionremainder, which performs two steps:

* In the first step, the function selects parents deterministically according to the integer part of the
scaled value for each individual. For example, if an individual's scaled value is 2.3, the function
selects that individual twice as a parent.

* In the second step, the selection function selects additional parents using the fractional parts of
the scaled values, as in stochastic uniform selection. The function lays out a line in sections,
whose lengths are proportional to the fractional part of the scaled value of the individuals, and
moves along the line in equal steps to select the parents.

Note that if the fractional parts of the scaled values all equal 0, as can occur using Top scaling,
the selection is entirely deterministic.

For details and more selection options, see “Selection Options” on page 15-30.

Reproduction Options

Reproduction options control how the genetic algorithm creates the next generation. The options are

* EliteCount — The number of individuals with the best fitness values in the current generation
that are guaranteed to survive to the next generation. These individuals are called elite children.

When EliteCount is at least 1, the best fitness value can only decrease from one generation to
the next. This is what you want to happen, since the genetic algorithm minimizes the fitness
function. Setting EliteCount to a high value causes the fittest individuals to dominate the
population, which can make the search less effective.

* CrossoverFraction — The fraction of individuals in the next generation, other than elite
children, that are created by crossover. “Setting the Crossover Fraction” on page 7-81 describes
how the value of CrossoverFraction affects the performance of the genetic algorithm.

Because elite individuals have already been evaluated, ga does not reevaluate the fitness function of
elite individuals during reproduction. This behavior assumes that the fitness function of an individual
is not random, but is a deterministic function. To change this behavior, use an output function. See
EvalElites in “The State Structure” on page 15-25.

Mutation and Crossover

The genetic algorithm uses the individuals in the current generation to create the children that make
up the next generation. Besides elite children, which correspond to the individuals in the current
generation with the best fitness values, the algorithm creates
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* Crossover children by selecting vector entries, or genes, from a pair of individuals in the current
generation and combines them to form a child

* Mutation children by applying random changes to a single individual in the current generation to
create a child

Both processes are essential to the genetic algorithm. Crossover enables the algorithm to extract the
best genes from different individuals and recombine them into potentially superior children. Mutation
adds to the diversity of a population and thereby increases the likelihood that the algorithm will
generate individuals with better fitness values.

See “Creating the Next Generation” on page 7-13 for an example of how the genetic algorithm
applies mutation and crossover.

You can specify how many of each type of children the algorithm creates as follows:

* EliteCount specifies the number of elite children.

* CrossoverFraction specifies the fraction of the population, other than elite children, that are
crossover children.

For example, if the PopulationSize is 20, the EliteCount is 2, and the CrossoverFractionis
0.8, the numbers of each type of children in the next generation are as follows:

There are two elite children.

There are 18 individuals other than elite children, so the algorithm rounds 0.8*18 = 14.4 to 14 to
get the number of crossover children.

The remaining four individuals, other than elite children, are mutation children.

Integer and Linear Constraints

When a problem has integer or linear constraints (including bounds), the algorithm modifies the
evolution of the population.

*  When the problem has both integer and linear constraints, the software modifies all generated
individuals to be feasible with respect to those constraints. You can use any creation, mutation, or
crossover function, and the entire population remains feasible with respect to integer and linear
constraints.

*  When the problem has only linear constraints, the software does not modify the individuals to be
feasible with respect to those constraints. You must use creation, mutation, and crossover
functions that maintain feasibility with respect to linear constraints. Otherwise, the population can
become infeasible, and the result can be infeasible. The default operators maintain linear
feasibility: gacreationlinearfeasible or gacreationnonlinearfeasible for creation,
mutationadaptfeasible for mutation, and crossoverintermediate for crossover.

The internal algorithms for integer and linear feasibility are similar to those for surrogateopt.
When a problem has integer and linear constraints, the algorithm first creates linearly feasible points.
Then the algorithm tries to satisfy integer constraints by rounding linearly feasible points to integers
using a heuristic that attempts to keep the points linearly feasible. When this process is unsuccessful
in obtaining enough feasible points for constructing a population, the algorithm calls intlinprog to
try to find more points that are feasible with respect to bounds, linear constraints, and integer
constraints.

Later, when mutation or crossover creates new population members, the algorithms ensure that the
new members are integer and linear feasible by taking similar steps. Each new member is modified, if
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necessary, to be as close as possible to its original value, while also satisfying the integer and linear
constraints and bounds.

See Also

More About

. “Genetic Algorithm Terminology” on page 7-10
. “Nonlinear Constraint Solver Algorithms” on page 7-53
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Coding and Minimizing a Fitness Function Using the Genetic
Algorithm

This example shows how to create and minimize a fitness function for the genetic algorithm solver ga
using three techniques:

* Basic

* Including additional parameters

* Vectorized for speed

Basic Fitness Function

The basic fitness function is Rosenbrock's function, a common test function for optimizers. The
function is a sum of squares:

Fx) = 1000 = x2)% + (1 = x7)2.

The function has a minimum value of zero at the point [1, 1]. Because the Rosenbrock function is
quite steep, plot the logarithm of one plus the function.

fsurf(@(x,y)log(l + 100*(x.”2 - y).”2 + (1 - x).”2),[0,2])
title('log(l + 100*(x(1)"2 - x(2))"2 + (1 - x(1))"2)")
view(-13,78)

hold on

hl = plot3(1,1,0.1,'r*', 'MarkerSize',12);
legend(hl, '"Minimum', 'Location', 'best');

hold off
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log(1 + 100%(x(1)? - x(2))? * (1 - x(1))?)

| * Minimumrﬂ
' 2
15

Fitness Function Code
The simple_ fitness function file implements Rosenbrock's function.
type simple fitness

function y = simple fitness(x)
%SSIMPLE _FITNESS fitness function for GA

% Copyright 2004 The MathWorks, Inc.
y =100 * (x(1)"2 - x(2)) "2 + (1 - x(1))"2;

A fitness function must take one input x where X is a row vector with as many elements as number of
variables in the problem. The fitness function computes the value of the function and returns that
scalar value in its one return argument y.

Minimize Using ga

To minimize the fitness function using ga, pass a function handle to the fitness function as well as the
number of variables in the problem. To have ga examine the relevant region, include bounds -3 <=
x(1) <= 3. Pass the bounds as the fifth and sixth arguments after numberQfVariables. For ga
syntax details, see ga.

ga is a random algorithm. For reproducibility, set the random number stream.

rng default % For reproducibility
FitnessFunction = @simple fitness;
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numberOfVariables = 2;

b =1[-3,-3];

ub = [3,3];

[x,fval] = ga(FitnessFunction,numberOfVariables,[]1,[1,[1,[],lb,ub)
Optimization terminated: maximum number of generations exceeded.

X = 1Ix2

1.5083 2.2781

fval = 0.2594

The x returned by the solver is the best point in the final population computed by ga. The fval is the
value of the function simple fitness evaluated at the point x. ga did not find an especially good
solution. For ways to improve the solution, see “Effects of Genetic Algorithm Options” on page 7-29.

Fitness Function with Additional Parameters

Sometimes your fitness function has extra parameters that act as constants during the optimization.
For example, a generalized Rosenbrock's function can have extra parameters representing the
constants 100 and 1:

f(x,a,b) = abd = x)* + (b — x1)*.

a and b are parameters to the fitness function that act as constants during the optimization (they are
not varied as part of the minimization). The parameterized fitness.m file implements this
parameterized fitness function.

type parameterized fitness

function y = parameterized fitness(x,pl,p2)
%SPARAMETERIZED FITNESS fitness function for GA

%  Copyright 2004 The MathWorks, Inc.
y = pl * (x(1)72 - x(2)) *2 + (p2 - x(1))"2;
Minimize Using Additional Parameters

Use an anonymous function to capture the values of the additional arguments, namely, the constants
a and b. Create a function handle FitnessFunction to an anonymous function that takes one input
X, and calls parameterized fitness with x, a, and b. The anonymous function contains the values
of a and b that exist when the function handle is created.

a 100;

b 1; % define constant values

FitnessFunction = @(x) parameterized fitness(x,a,b);

[x,fval] = ga(FitnessFunction,numberOfVariables,[1,[1,[1,[],lb,ub)

Optimization terminated: maximum number of generations exceeded.
X = 1Ix2

1.3198 1.7434
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fval = 0.1025
See “Passing Extra Parameters”.

Vectorized Fitness Function

To gain speed, vectorize your fitness function. A vectorized fitness function computes the fitness of a
collection of points at once, which generally saves time over evaluating these points individually. To
write a vectorized fitness function, have your function accept a matrix, where each matrix row
represents one point, and have the fitness function return a column vector of fitness function values.

To change the parameterized fitness function file to a vectorized form:

* Change each variable x (1) to x(:,1), meaning the column vector of variables corresponding to
x(1i).

* Change each vector multiplication * to . * and each exponentiation ~ to .” indicating that the
operations are element-wise. There are no vector multiplications in this code, so simply change
the exponents.

type vectorized fitness

function y = vectorized fitness(x,pl,p2)
%SVECTORIZED FITNESS fitness function for GA

% Copyright 2004-2010 The MathWorks, Inc.
y =pl * (x(:,1).72 - x(:,2)).72 + (p2 - x(:,1)).72;

This vectorized version of the fitness function takes a matrix x with an arbitrary number of points,
meaning and arbitrary number of rows, and returns a column vector y with the same number of rows
as X.

Tell the solver that the fitness function is vectorized in the 'UseVectorized' option.
options = optimoptions(@ga, 'UseVectorized',true);
Include options as the last argument to ga.

VFitnessFunction = @(x) vectorized fitness(x,100,1);
[x,fval] = ga(VFitnessFunction,numberOfVariables,[1,[1,[1,[1,1b,ub,[],options)

Optimization terminated: maximum number of generations exceeded.
X = 1Ix2

1.6219 2.6334

fval = 0.3876

What is the difference in speed? Time the optimization both with and without vectorization.

tic
[x,fval] = ga(VFitnessFunction,numberOfVariables,[1,[1,[1,[1,lb,ub,[],options);

Optimization terminated: maximum number of generations exceeded.
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v = toc;

tic

[x,fval] = ga(FitnessFunction,numberOfVariables,[1,[1,[1,[]1,1lb,ub);
Optimization terminated: maximum number of generations exceeded.

nv = toc;
fprintf('Using vectorization took %f seconds. No vectorization took %f seconds.\n',v,nv)

Using vectorization took 0.153337 seconds. No vectorization took 0.212880 seconds.

In this case, the improvement by vectorization was not great, because computing the fitness function
takes very little time. However, for more time-consuming fitness functions, vectorization can be
helpful. See “Vectorize the Fitness Function” on page 7-98.

See Also

More About

. “Passing Extra Parameters”
. “Vectorize the Fitness Function” on page 7-98
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Constrained Minimization Using the Genetic Algorithm

7-24

This example shows how to minimize an objective function subject to nonlinear inequality constraints
and bounds using the Genetic Algorithm.

Constrained Minimization Problem
For this problem, the objective function to minimize is a simple function of a 2-D variable x.

simple objective(x) = (4 - 2.1*x(1)"2 + x(1)"4/3)*x(1)"2 + x(1)*x(2) + (-4 +
4%x(2)72)*x(2)°2;

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1] on page 7-0

Additionally, the problem has nonlinear constraints and bounds.

X(1)*x(2) + x(1) - x(2) + 1.5 <= 0 (nonlinear constraint)
10 - x(1)*x(2) <= 0 (nonlinear constraint)
0 <= x(1) <=1 (bound)
0 <= x(2) <= 13 (bound)

Code the Fitness Function

Create a MATLAB file named simple objective.m containing the following code:
type simple objective

function y = simple objective(x)
%SIMPLE _OBJECTIVE Objective function for PATTERNSEARCH solver

%  Copyright 2004 The MathWorks, Inc.
x(1);
X(2);

4-2.1.%x1.72+x1.74./3) . *X1.7"24X1.*X2+(-4+4.*x2.72) . *x2.72;

= (

<

Solvers such as ga accept a single input x, where x has as many elements as the number of variables
in the problem. The objective function computes the scalar value of the objective function and returns
it in its single output argument y.

Code the Constraint Function
Create a MATLAB file named simple constraint.m containing the following code:
type simple constraint

function [c, ceq] = simple constraint(x)
%SIMPLE CONSTRAINT Nonlinear inequality constraints.

% Copyright 2005-2007 The MathWorks, Inc.

c = [1.5 + x(1)*x(2) + x(1) - x(2);
-x(1)*x(2) + 101;

% No nonlinear equality constraints:
eq = [];
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The constraint function computes the values of all the inequality and equality constraints and returns
the vectors c and ceq, respectively. The value of ¢ represents nonlinear inequality constraints that
the solver attempts to make less than or equal to zero. The value of ceq represents nonlinear equality
constraints that the solver attempts to make equal to zero. This example has no nonlinear equality
constraints, so ceq = []. For details, see “Nonlinear Constraints”.

Minimizing Using ga

Specify the objective function as a function handle.
ObjectiveFunction = @simple objective;
Specify the problem bounds.

b
ub

[0 0];
[1 13];

ower bounds

% L
% Upper bounds

Specify the nonlinear constraint function as a function handle.

ConstraintFunction = @simple constraint;

Specify the number of problem variables.

nvars = 2;

Call the solver, requesting the optimal point x and the function value at the optimal point fval.

rng default % For reproducibility
[x,fval] = ga(ObjectiveFunction,nvars,[]1,[1,[1,[1,1lb,ub,ConstraintFunction)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

X = 1x2

0.8122 12.3103

fval = 9.1268e+04
Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
gaplotbestf plots the best objective function value at every iteration, and the plot function
gaplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter’.

options = optimoptions("ga", 'PlotFcn', {@gaplotbestf,@gaplotmaxconstr},
'‘Display', 'iter');

Run the solver, including the options argument.

[x,fval] = ga(ObjectiveFunction,nvars,[1,[1,[1,[1,lb,ub,
ConstraintFunction,options)

Single objective optimization:

2 Variable(s)
2 Nonlinear inequality constraint(s)
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Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible
Best Max Stall
Generation Func-count f(x) Constraint Generations
1 2524 91986.8 7.786e-09 0
2 4986 94677 .4 0 0
3 10362 96929.2 0 0
4 16067 96006.3 0 0
5 23405 91267.6 0.0009898 0

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

10 210° Best: 91264 Mean: 91268

- . Best fitness
* Mean fitness

Fitness value
(4]
T

{] 1 1 i 1 1 1 1 1 1 i
0 20 40 &0 B8O 100 120 140 160 180 200
Generation
. Max constraint: 0.000989821

IMax constraint
(4]

{] i i i i i i i i i i
0 20 40 &0 a0 100 120 140 160 180 200

Generation

X = 1Ix2

0.8122 12.3103

fval = 9.1268e+04

With iterative display, that ga provides details about the problem type and the creation, crossover,
mutation, and selection operators.
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Nonlinear constraints cause ga to solve many subproblems at each iteration. As shown in both the
plots and the iterative display, the solution process has few iterations. However, the Func-count
column in the iterative display shows many function evaluations per iteration.

The ga solver handles linear constraints and bounds differently from nonlinear constraints. All the
linear constraints and bounds are satisfied throughout the optimization. However, ga may not satisfy
all the nonlinear constraints at every generation. If ga converges to a solution, the nonlinear
constraints will be satisfied at that solution.

ga uses the mutation and crossover functions to produce new individuals at every generation. The
way the ga satisfies the linear and bound constraints is to use mutation and crossover functions that
only generate feasible points. For example, in the previous call to ga, the default mutation function
(for unconstrained problems) mutationgaussian does not satisfy the linear constraints and so ga
uses the mutationadaptfeasible function instead by default. If you provide a custom mutation
function, this custom function must only generate points that are feasible with respect to the linear
and bound constraints. All the crossover functions in the toolbox generate points that satisfy the
linear constraints and bounds.

However, when your problem contains integer constraints, ga enforces that all iterations satisfy
bounds and linear constraints. This feasibility occurs for all mutation, crossover, and creation
operators, to within a small tolerance.

Provide a Start Point

To speed the solver, you can provide an initial population in the InitialPopulationMatrix option.
ga uses the initial population to start its optimization. Specify a row vector or a matrix where each
row represents one start point.

X0 = [0.8 12.5]; % Start point (row vector)

options.InitialPopulationMatrix = X0;

[x,fval] = ga(ObjectiveFunction,nvars,[]1,[1,[1,[1,1lb,ub,
ConstraintFunction,options)

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible
Best Max Stall
Generation Func-count f(x) Constraint Generations
1 2500 91507.4 0 0
2 4950 91270.4 0.0009621 0
3 7400 91270.4 0.0009621 1
4 9850 91269.2 0.0009958 0
5 12300 91269.2 0.0009958 1

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.
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In this case, providing a start point does not substantially change the solver progress.

References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also

More About

. “Write Constraints” on page 2-6
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Effects of Genetic Algorithm Options

This example shows the effects of some options for the genetic algorithm function ga. You create and
change options by using the optimoptions function.

Set Up a Problem for ga

ga searches for a minimum of a function using the genetic algorithm. For this example, use ga to
minimize the fitness function shufcn, a real-valued function of two variables.

Plot shufcn over the range = [-2 2;-2 2] by calling plotobjective.
plotobjective(@shufcn,[-2 2; -2 2]);

To use the ga solver, provide at least two input arguments: a fitness function and the number of
variables in the problem. The first two output arguments returned by ga are X, the best point found,
and Fval, the function value at the best point. A third output argument, exitFlag, indicates why ga

stopped. ga can also return a fourth argument, Output, which contains information about the
performance of the solver.

FitnessFunction = @shufcn;
numberOfVariables = 2;

Run the ga solver.

rng default % For reproducibility
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance

fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 124

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 5881

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.199

If you run this example without the rng default command, your results can differ, because ga is a
stochastic algorithm.

How the Genetic Algorithm Works

The genetic algorithm works on a population using a set of operators that are applied to the
population. A population is a set of points in the design space. The initial population is generated
randomly by default. The algorithm computes the next generation of the population using the fitness
of the individuals in the current generation. For details, see “How the Genetic Algorithm Works” on
page 7-12.

Add Visualization

To visualize the solver performance while it is running, set a 'PlotFcn' option using
optimoptions. In this case, select two plot functions in a cell array. Set gaplotbestf, which plots
the best and mean score of the population at every generation. Also set gaplotstopping, which
plots the percentage of stopping criteria satisfied.

opts = optimoptions(@ga, 'PlotFcn', {@gaplotbestf,@gaplotstopping});
Run the ga solver, including the opts argument.

[x,Fval,exitFlag,Output] = ...
ga(FitnessFunction,numberOfvVariables,[1,[1,[1,[1,[1,[1,[]1,0pts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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Specify Population Options

Population options can have a large effect on solver performance. The speed of each iteration
depends on the population size: a larger population leads to slower iterations. Conversely, a larger
population leads to ga exploring more thoroughly, so can lead to a better solution. Similarly, a wider
initial range can lead to more thorough exploration, but can require a larger population to explore the
wider range with a similar thoroughness.

Specify Population Size

ga creates a default initial population by using a uniform random number generator. The default
population size used by ga is 50 when the number of decision variables is less than 5, and 200
otherwise. The default size might not work well for some problems; for example, a smaller population
size can be sufficient for smaller problems. Since the current problem has only two variables, specify
a population size of 10. Set the value of the option PopulationSize to 10 in the existing options,
opts.

opts.PopulationSize = 10;
Specify Initial Population Range

The default method for generating an initial population uses a uniform random number generator. For
problems without integer constraints, ga creates an initial population where all the points are in the
range -10 to 10. For example, you can generate a population of size three in the default range using
this command:

Population = [-10,-10] + 20*rand(3,2);
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You can set the initial range by changing the InitialPopulationRange option. The range must be
a matrix with two rows. If the range has only one column, that is, it is 2-by-1, then the range of every
variable is the given range. For example, if you set the range to [ -1; 1], then the initial range for
both variables is -1 to 1. To specify a different initial range for each variable, you must specify the
range as a matrix with two rows and numberOfVariables columns. For example, if you set the
range to [-1 ©; 1 2], then the first variable has the range -1 to 1, and the second variable has the
range 0 to 2 (each column corresponds to a variable).

Modify the value of the option InitialPopulationRange in the existing options, opts.
opts.InitialPopulationRange = [-1 0; 1 2];
Run the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[]1,[],
[1,01,01,[1,0pts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Best: -179.987 Mean: -78.6061

ol

. * Best fitness
=0l -t * Mean fitness

'1 DD = = :.lt-i .

Fitness value

-150

_EDD i i i i i i i i i ]
g0 100 120 140 160 180 200

Generation
Stopping Criteria

=
P
=
I
=
=7
=

Stall (T}

s o)

Time

Generation

=
-
=
[
(=)
7]
=

40 50 &0 70 B0 a0 100
% of criteria met

fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 67

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 614

fprintf('The best function value found is: %g\n', Fval);
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The best function value found is: -179.987

Reproduce Results

By default, ga starts with a random initial population created using MATLAB® random number
generators. The solver produces the next generation using ga operators that also use these same
random number generators. Every time a random number is generated, the state of the random
number generators changes. So, even if you do not change any options, you can get different results
when you run the solver again.

Run the solver twice to show this phenomenon.

Run the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.484

Run ga again.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -185.867

ga gives different results in the two runs because the state of the random number generator changes
from one run to another.

If you want to reproduce your results before you run ga, you can save the state of the random
number stream.

thestate = rng;

Run ga.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467

Reset the stream and rerun ga. The results are identical to the previous run.

rng(thestate);
[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467
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If you run ga before specifying to reproduce the results, you can reset the random number generator
as long as you have the output structure.

strm = RandStream.getGlobalStream;
strm.State = Output.rngstate.State;

Rerun ga. Again, the results are identical.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.467

Modify Stopping Criteria

ga uses four different criteria to determine when to stop the solver. ga stops when it reaches the
maximum number of generations; by default, this number is 100 times the number of variables. ga
also detects if the best fitness value does not change for some time given in seconds (stall time limit),
or for some number of generations (maximum stall generations). Another criteria is the maximum
time limit in seconds. Modify the stopping criteria to increase the maximum number of generations to
300 and the maximum stall generations to 100.

opts = optimoptions(opts, 'MaxGenerations',300, 'MaxStallGenerations', 100);
Rerun the ga solver.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[]1,[],
[1,01,01,[1,0pts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 299

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 2702

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.729

Specify ga Operators

ga starts with a random set of points in the population and uses operators to produce the next
generation of the population. The different operators are scaling, selection, crossover, and mutation.
The toolbox provides several functions to specify for each operator. Specify fitscalingprop for
FitnessScalingFcn and selectiontournament for SelectionFcn.

opts = optimoptions(@ga, 'SelectionFcn',@selectiontournament,
"FitnessScalingFcn',@fitscalingprop);

Rerun ga.

[x,Fval,exitFlag,Output] = ga(FitnessFunction,numberOfVariables,[],[]1,[],
[1,01,01,[1,0pts);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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fprintf('The number of generations is: %d\n', Output.generations);

The number of generations is: 52

fprintf('The number of function evaluations is: %d\n', Output.funccount);
The number of function evaluations is: 2497

fprintf('The best function value found is: %g\n', Fval);

The best function value found is: -186.417

The best function value can improve or get worse based on the specified operators. Experimenting
with different operators is often the best way to determine which set of operators works best for your
problem.

See Also
optimoptions

More About

. “Set and Change Options” on page 2-9
. “How the Genetic Algorithm Works” on page 7-12
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Mixed Integer ga Optimization

In this section...

“Solving Mixed Integer Optimization Problems” on page 7-37
“Characteristics of the Integer ga Solver” on page 7-38
“Effective Integer ga” on page 7-42

“Integer ga Algorithm” on page 7-42

Solving Mixed Integer Optimization Problems

ga can solve problems when certain variables are integer-valued. Give intcon, a vector of the x
components that are integers:

[x,fval,exitflag] = ga(fitnessfcn,nvars,A,b,[1,I[1,...
1b,ub,nonlcon,intcon,options)

intcon is a vector of positive integers that contains the x components that are integer-valued. For
example, if you want to restrict x(2) and x(10) to be integers, set intconto [2,10].

The surrogateopt solver also accepts integer constraints.

Note Restrictions exist on the types of problems that ga can solve with integer variables. In
particular, ga does not accept nonlinear equality constraints when there are integer variables. For
details, see “Characteristics of the Integer ga Solver” on page 7-38.

Tip ga solves integer problems best when you provide lower and upper bounds for every x
component.

Mixed Integer Optimization of Rastrigin's Function

This example shows how to find the minimum of Rastrigin's function restricted so the first component
of x is an integer. The components of x are further restricted to be in the region
S5m=x(1)<20m, -20m=x(2)< —-4m.

Set up the bounds for your problem

b
ub

[5%pi, -20%pil;
[20%pi, -4*pi];

Set a plot function so you can view the progress of ga
opts = optimoptions('ga', 'PlotFcn',@gaplotbestf);
Call the ga solver where x(1) has integer values
rng(l, 'twister') % for reproducibility

intcon = 1;

[x,fval,exitflag] = ga(@rastriginsfcn,2,[1,[1,[1,I[1,...
1b,ub,[],intcon,opts)
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Best: 424.136 Mean: 614.506
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Optimization terminated: average change in the penalty fitness value less than options.FunctionT
and constraint violation is less than options.ConstraintTolerance.

X = 1Ix2

16.0000 -12.9325

fval = 424.1355
exitflag = 1

ga converges quickly to the solution.

Characteristics of the Integer ga Solver

There are some restrictions on the types of problems that ga can solve when you include integer
constraints:

* No nonlinear equality constraints. Any nonlinear constraint function must return [] for the
nonlinear equality constraint. For a possible workaround, see “Example: Integer Programming
with a Nonlinear Equality Constraint” on page 7-39.

* Only doubleVector population type.
* No hybrid function. ga overrides any setting of the HybridFcn option.

* gaignores the ParetoFraction, DistanceMeasureFcn, InitialPenalty, and
PenaltyFactor options.
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The listed restrictions are mainly natural, not arbitrary. For example, no hybrid functions support
integer constraints. So ga does not use hybrid functions when there are integer constraints.

Example: Integer Programming with a Nonlinear Equality Constraint

This example attempts to locate the minimum of the Ackley function (included with your software) in
five dimensions with these constraints:

* X(1),x(3), and x(5) are integers.

* norm(x) = 4.

The Ackley function is difficult to minimize. Adding integer and equality constraints increases the
difficulty.

To include the nonlinear equality constraint, give a small tolerance tol that allows the norm of x to
be within tol of 4. Without a tolerance, the nonlinear equality constraint is never satisfied, and the
solver does not realize when it has a feasible solution.

1 Write the expression norm(x) = 4 as two “less than zero” inequalities:

norm(x) - 4< 0 (7-1)
-(norm(x) - 4) =< 0.
2 Allow a small tolerance in the inequalities:

norm(x) - 4 - tol< 0 (7-2)
-(norm(x) - 4) - tol= 0.
3 Write a nonlinear inequality constraint function that implements these inequalities:

function [c, ceq] = eqCon(x)

ceq = [1;
rad = 4;
tol = le-3;

confcnval = norm(x) - rad;
¢ = [confcnval - tol;-confcnval - toll];
4 Set options:

* MaxStallGenerations = 50 — Allow the solver to try for a while.

* FunctionTolerance = le-10 — Specify a stricter stopping criterion than usual.

* MaxGenerations = 300 — Allow more generations than default.

* PlotFcn = @gaplotbestfun — Observe the optimization.

opts = optimoptions('ga', 'MaxStallGenerations',50, 'FunctionTolerance',le-10,...

'MaxGenerations',300, 'PlotFcn',@gaplotbestfun);
5 Set lower and upper bounds to help the solver:

nVar = 5;

1lb = -5*ones(1,nVar);

ub = 5*ones(1,nVar);
6 Solve the problem:

rng (0, 'twister') % for reproducibility

[x,fval,exitflag] = ga(@ackleyfcn,nvar,[]1,I[1,[1,[1],
1b,ub,@eqCon,[1 3 5],o0pts);
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Optimization terminated: average change in the penalty fitness value less than options.Functi
and constraint violation is less than options.ConstraintTolerance.

Best: 5.2303
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7 Examine the solution:
x,fval,exitflag,norm(x)
X =

0 -1.7367 -3.0000 -0.0000 -2.0000

fval =

5.2303

exitflag =

1

ans =
4.0020

The odd x components are integers, as specified. The norm of x is 4, to within the given relative
tolerance of 1le-3.
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Despite the positive exit flag, the solution is not the global optimum. Run the problem again and
examine the solution:

opts = optimoptions('ga',opts, 'Display', 'off');
[x2,fval2,exitflag2] = ga(@ackleyfcn,nVar,[1,[1,[1,I1,
1b,ub,@eqCon,[1 3 5],0pts);

Best: 4.552
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Examine the second solution:
x2,fval2,exitflag2,norm(x2)
X2 =

-2.0000 2.8930 0 -1.9095 0

fval2 =

4.5520

exitflag2 =

0

ans =
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4.0020

The second run gives a better solution (lower fitness function value). Again, the odd x
components are integers, and the norm of X2 is 4, to within the given relative tolerance of 1le-3.

Be aware that this procedure can fail; ga has difficulty with simultaneous integer and equality
constraints.

Effective Integer ga

To use ga most effectively on integer problems, follow these guidelines.

* Bound each component as tightly as you can. This practice gives ga the smallest search space,
enabling ga to search most effectively.

* Ifyou cannot bound a component, then specify an appropriate initial range. By default, ga creates
an initial population with range [ - 1e4, 1e4] for each component. A smaller or larger initial range
can give better results when the default value is inappropriate. To change the initial range, use
the InitialPopulationRange option.

* Ifyou have more than 10 variables, set a population size that is larger than default by using the
PopulationSize option. The default value is 200 for six or more variables. For a large
population size:

* ga can take a long time to converge. If you reach the maximum number of generations (exit
flag 0), increase the value of the MaxGenerations option.

* Decrease the mutation rate. To do so, increase the value of the CrossoverFraction option
from its default of 0.8 to 0.9 or higher.

* Increase the value of the ELiteCount option from its default of 0.05*PopulationSize to
0.1*PopulationSize or higher.

For information on options, see the ga options input argument.

Integer ga Algorithm

Integer programming with ga involves several modifications of the basic algorithm (see “How the
Genetic Algorithm Works” on page 7-12). For integer programming:

» By default, special creation, crossover, and mutation functions enforce variables to be integers.
For details, see Deep et al. [2].

» Ifyou use nondefault creation, crossover, or mutation functions, ga enforces linear feasibility and
feasibility with respect to integer constraints at each iteration.

* The genetic algorithm attempts to minimize a penalty function, not the fitness function. The
penalty function includes a term for infeasibility. This penalty function is combined with binary
tournament selection by default to select individuals for subsequent generations. The penalty
function value of a member of a population is:

+ If the member is feasible, the penalty function is the fitness function.

+ If the member is infeasible, the penalty function is the maximum fitness function among
feasible members of the population, plus a sum of the constraint violations of the (infeasible)
point.
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For details of the penalty function, see Deb [1].

References

[1] Deb, Kalyanmoy. An efficient constraint handling method for genetic algorithms. Computer
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See Also

Related Examples

. “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm” on page 7-
44

. “Mixed-Integer Surrogate Optimization” on page 10-62

. “Solve Nonlinear Problem with Integer and Nonlinear Constraints” on page 10-83
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Solve a Mixed-Integer Engineering Design Problem Using the
Genetic Algorithm

This example shows how to solve a mixed integer engineering design problem using the Genetic
Algorithm (ga) solver in Global Optimization Toolbox.

The problem illustrated in this example involves the design of a stepped cantilever beam. In
particular, the beam must be able to carry a prescribed end load. We will solve a problem to minimize
the beam volume subject to various engineering design constraints.

In this example we will solve two bounded versions of the problem published in [1].

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end and a load is applied at the free end, as shown in
the figure below. The beam must be able to support the given load, F*, at a fixed distance L from the
support. Designers of the beam can vary the width (&) and height (") of each section. We will assume
that each section of the cantilever has the same length, /.

Volume of the beam

The volume of the beam, V, is the sum of the volume of the individual sections

Vo= M{byhy + b + bhy + byhy + bglig)

Constraints on the Design : 1 - Bending Stress
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Consider a single cantilever beam, with the centre of coordinates at the centre of its cross section at

the free end of the beam. The bending stress at a point (% ¥ %) in the beam is given by the following
equation

ay = Mx)y/I
where M () is the bending moment at #, x is the distance from the end load and [ is the area

moment of inertia of the beam.

Now, in the stepped cantilever beam shown in the figure, the maximum moment of each section of the
beam is F'Ii, where i is the maximum distance from the end load, F, for each section of the beam.
Therefore, the maximum stress for the i-th section of the beam, i, is given by

o = PD;(hif2) /1
where the maximum stress occurs at the edge of the beam, ¥ hi/2, The area moment of inertia of
the i-th section of the beam is given by

I = b;h? /12
Substituting this into the equation for i gives

a; = 6PD;/b;h?

The bending stress in each part of the cantilever should not exceed the maximum allowable stress,
Tmar, Consequently, we can finally state the five bending stress constraints (one for each step of the
cantilever)

6PL _

byhi = T
6P(21) _
Ejll.h"; — r"-n'u'l'n'f'
6P(31) _
bsh? ~ Fma
6P(4l) _
Y
6P(5) _
boh? = O

Constraints on the Design : 2 - End deflection

The end deflection of the cantilever can be calculated using Castigliano's second theorem, which
states that

. ou
TP
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where 4 is the deflection of the beam, [ is the energy stored in the beam due to the applied force, F.
The energy stored in a cantilever beam is given by
L
U= [ M?[2EI dx
o)
where A{ is the moment of the applied force at .

Given that M = Pz for a cantilever beam, we can write the above equation as

U= P2E £ Ji:.r 4+ (2 + 31 B + (x+ 2015 + (x+ 1)/ 1y + °/I5) da
where In is the area moment of inertia of the n-th part of the cantilever. Evaluating the integral gives
the following expression for [7.

U = (P/2)(P/3E)(61/1) + 3T/L + 19/I3 + T/I, + 1/I5)
Applying Castigliano's theorem, the end deflection of the beam is given by

§=PP/3EGL1/I + 37/I, + 19/I; 4+ T/ I, + 1/1I;)

Now, the end deflection of the cantilever, 4, should be less than the maximum allowable deflection,
dinax, which gives us the following constraint.

P /3E(61/1 + 37/ + 19/ I3 + 7/1y + 1/I5) < fnax
Constraints on the Design : 3 - Aspect ratio

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio,
@mar, That is,

frl:_,-"jjl: ’_ mar for i=1,....9
State the Optimization Problem

We are now able to state the problem to find the optimal parameters for the stepped cantilever beam
given the stated constraints.

Let 1 = E,u!, re = h 1, Ty = 'h-’, Ty = .h-_r’ T = h-"r, Tg = f.'ﬂ_’ Ty = h,' g = h 3, Ty = bs and @0 = hs
Minimize:

V = l{xy1xs + 23704 + g + T7a8 + ToTin)
Subject to:

Gl

5 SO
Ty

TR

GP(21)
] ._ nn’l’lh’-"
rrrg
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6P(31) _
3 = Tmar
.r'_-..r';
6P(4l) _
7 = Tmar
.r':|.r'1
6P(51)
7 = Tmar
.r'J.r'§

PP 244 148 T6 28 4

3 L fone
st st 3t 5t —F) = 0
E "mz;  Tary  Isrp;  IiTi TaTyg

o fey < 20, xqfay < 20, agfas < 20, xs/x7 < 20 and xypfag < 20

The first step of the beam can only be machined to the nearest centimetre. That is, ¥1 and ¥z must be
integer. The remaining variables are continuous. The bounds on the variables are given below:-

1<z <5

30 < 20 < 65
2.4 < x3, 25 < 3.1
45 < @4, x5 < 60

1l <a7,09 <D
30 < xg,rpp = 65

Design Parameters for this Problem

For the problem we will solve in this example, the end load that the beam must support is
P = 50000N.

The beam lengths and maximum end deflection are:

* Total beam length, L = 500¢m
* Individual section of beam, ! = 100cm

Maximum beam end deflection, dimar = 2.Tem
Fho 2
The maximum allowed stress in each step of the beam, Tmar = 14000N/cm

Young's modulus of each step of the beam, £ = 2 * 107N /em*

Solve the Mixed Integer Optimization Problem

We now solve the problem described in State the Optimization Problem.
Define the Fitness and Constraint Functions

Examine the MATLAB files cantileverVolume.mand cantileverConstraints.m to see how the
fitness and constraint functions are implemented.
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A note on the linear constraints: When linear constraints are specified to ga, you normally specify
them via the A, b, Aeq and beq inputs. In this case we have specified them via the nonlinear
constraint function. This is because later in this example, some of the variables will become discrete.
When there are discrete variables in the problem it is far easier to specify linear constraints in the
nonlinear constraint function. The alternative is to modify the linear constraint matrices to work in
the transformed variable space, which is not trivial and maybe not possible. Also, in the mixed integer
ga solver, the linear constraints are not treated any differently to the nonlinear constraints regardless
of how they are specified.

Set the Bounds

Create vectors containing the lower bound (1b) and upper bound constraints (ub).

30 2.4 4 130 1 30];

b [1 45 2.4 45
b [565 3.160 3.1 605655 65];

Set the Options

To obtain a more accurate solution, we increase the PopulationSize, and MaxGenerations
options from their default values, and decrease the EliteCount and FunctionTolerance options.
These settings cause ga to use a larger population (increased PopulationSize), to increase the search
of the design space (reduced EliteCount), and to keep going until its best member changes by very
little (small FunctionTolerance). We also specify a plot function to monitor the penalty function value
as ga progresses.

Note that there are a restricted set of ga options available when solving mixed integer problems - see
Global Optimization Toolbox User's Guide for more details.

opts = optimoptions(@ga, ...
'"PopulationSize', 150,
'MaxGenerations', 200,
'EliteCount', 10,
'"FunctionTolerance', 1le-8,
'PlotFcn', @gaplotbestf);

Call ga to Solve the Problem

We can now call ga to solve the problem. In the problem statement 1 and 'z are integer variables.
We specify this by passing the index vector [1 2] to ga after the nonlinear constraint input and
before the options input. We also seed and set the random number generator here for reproducibility.

rng(0, 'twister');
[xbest, fbest, exitflag] = ga(@cantileverVolume, 10, [1, [1, [1, [],
1b, ub, @cantileverConstraints, [1 2], opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

If a problem has integer constraints, ga reformulates it internally. In particular, the fitness function in
the problem is replaced by a penalty function which handles the constraints. For feasible population
members, the penalty function is the same as the fitness function.

The solution returned from ga is displayed below. Note that the section nearest the support is
constrained to have a width (1) and height ('2) which is an integer value and this constraint has

been honored by GA.

display(xbest);

xbest =
Columns 1 through 7

3.0000 60.0000 2.8504 57.0057 2.6114 50.6243 2.2132

Columns 8 through 10

44.2349 1.7543  35.0595

We can also ask ga to return the optimal volume of the beam.

fprintf('\nCost function returned by ga = %g\n', fbest);

7-49



7 Using the Genetic Algorithm

7-50

Cost function returned by ga = 63408.9

Add Discrete Non-Integer Variable Constraints

The engineers are now informed that the second and third steps of the cantilever can only have
widths and heights that are chosen from a standard set. In this section, we show how to add this
constraint to the optimization problem. Note that with the addition of this constraint, this problem is
identical to that solved in [1].

First, we state the extra constraints that will be added to the above optimization

* The width of the second and third steps of the beam must be chosen from the following set:- [2.4,
2.6,2.8,3.1] cm

* The height of the second and third steps of the beam must be chosen from the following set:- [45,
50, 55, 60] cm

To solve this problem, we need to be able to specify the variables ¥, T4, *5 and ' as discrete
variables. To specify a component *J as taking discrete values from the set & = 1. ... Uk, optimize

with ¥ an integer variable taking values from 1 to &, and use 5(27) as the discrete value. To specify
the range (1 to k), set 1 as the lower bound and k as the upper bound.

So, first we transform the bounds on the discrete variables. Each set has 4 members and we will map
the discrete variables to an integer in the range [1, 4]. So, to map these variables to be integer, we
set the lower bound to 1 and the upper bound to 4 for each of the variables.

lb=[1301111130130];

ub = [56544445655 65];

Transformed (integer) versions of *1, T4, s and #4 will now be passed to the fitness and constraint
functions when the ga solver is called. To evaluate these functions correctly, 1, T4, Ts and ¥ need to

be transformed to a member of the given discrete set in these functions. To see how this is done,
examine the MATLAB files cantileverVolumeWithDisc.m,
cantileverConstraintsWithDisc.mand cantileverMapVariables.m.

Now we can call ga to solve the problem with discrete variables. In this case 1:---: Tti are integers.
This means that we pass the index vector 1:6 to ga to define the integer variables.

rng(0, 'twister');
[xbestDisc, fbestDisc, exitflagDisc] = ga(@cantileverVolumeWithDisc,
10, [1, [1, I1, [1, lb, ub, @cantileverConstraintsWithDisc, 1:6, opts);

Optimization terminated: maximum number of generations exceeded.
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Analyze the Results

xbestDisc(3:6) are returned from ga as integers (i.e. in their transformed state). We need to
reverse the transform to retrieve the value in their engineering units.

xbestDisc = cantileverMapVariables(xbestDisc);
display(xbestDisc);
xbestDisc =
Columns 1 through 7
3.0000 60.0000 3.1000 55.0000 2.6000 50.0000 2.2430
Columns 8 through 10

44.8603 1.8279  36.5593

As before, the solution returned from ga honors the constraint that 1 and 2 are integers. We can
also see that *1, ™5 are chosen from the set [2.4, 2.6, 2.8, 3.1] cm and ¥4, 4 are chosen from the set
[45, 50, 55, 60] cm.

Recall that we have added additional constraints on the variables x(3), x(4), x(5) and x(6). As
expected, when there are additional discrete constraints on these variables, the optimal solution has
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a higher minimum volume. Note further that the solution reported in [1] has a minimum volume of
64558cm® and that we find a solution which is approximately the same as that reported in [1].

fprintf('\nCost function returned by ga = %g\n', fbestDisc);

Cost function returned by ga = 64795

Summary

This example illustrates how to use the genetic algorithm solver, ga, to solve a constrained nonlinear
optimization problem which has integer constraints. The example also shows how to handle problems
that have discrete variables in the problem formulation.

References

[1] Thanedar, P. B., and G. N. Vanderplaats. "Survey of Discrete Variable Optimization for Structural
Design." Journal of Structural Engineering 121 (3), 1995, pp. 301-306.

See Also

More About
. “Mixed Integer ga Optimization” on page 7-37
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Nonlinear Constraint Solver Algorithms

In this section...

“Augmented Lagrangian Genetic Algorithm” on page 7-53
“Penalty Algorithm” on page 7-54

Augmented Lagrangian Genetic Algorithm

By default, the genetic algorithm uses the Augmented Lagrangian Genetic Algorithm (ALGA) to solve
nonlinear constraint problems without integer constraints. The optimization problem solved by the
ALGA algorithm is

minf(x)
X

such that

cix) =0, i=1..m
ceqix) =0, i=m+1..mt
A-x<b
Aeq - x = beq
Ib = x < ub,

where c(x) represents the nonlinear inequality constraints, ceq(x) represents the equality constraints,
m is the number of nonlinear inequality constraints, and mt is the total number of nonlinear
constraints.

The Augmented Lagrangian Genetic Algorithm (ALGA) attempts to solve a nonlinear optimization
problem with nonlinear constraints, linear constraints, and bounds. In this approach, bounds and
linear constraints are handled separately from nonlinear constraints. A subproblem is formulated by
combining the fitness function and nonlinear constraint function using the Lagrangian and the
penalty parameters. A sequence of such optimization problems are approximately minimized using
the genetic algorithm such that the linear constraints and bounds are satisfied.

A subproblem formulation is defined as

m mt mt
O(x,4,5,0) = f0) - > Asloglsi—G0)+ > Aceq)+5 > ceq(o?,
i=1 i=m+1 i=m+1

where

* The components A, of the vector A are nonnegative and are known as Lagrange multiplier
estimates

* The elements s; of the vector s are nonnegative shifts
* pis the positive penalty parameter.

The algorithm begins by using an initial value for the penalty parameter (InitialPenalty).

The genetic algorithm minimizes a sequence of subproblems, each of which is an approximation of
the original problem. Each subproblem has a fixed value of 4, s, and p. When the subproblem is
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minimized to a required accuracy and satisfies feasibility conditions, the Lagrangian estimates are
updated. Otherwise, the penalty parameter is increased by a penalty factor (PenaltyFactor). This
results in a new subproblem formulation and minimization problem. These steps are repeated until
the stopping criteria are met.

Each subproblem solution represents one generation. The number of function evaluations per
generation is therefore much higher when using nonlinear constraints than otherwise.

Choose the Augmented Lagrangian algorithm by setting the NonlinearConstraintAlgorithm
option to 'auglag' using optimoptions.

For a complete description of the algorithm, see the following references:

References

[1] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian
Algorithm for Optimization with General Constraints and Simple Bounds,” SIAM Journal on
Numerical Analysis, Volume 28, Number 2, pages 545-572, 1991.

[2] Conn, A. R., N. I. M. Gould, and Ph. L. Toint. “A Globally Convergent Augmented Lagrangian
Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds,”
Mathematics of Computation, Volume 66, Number 217, pages 261-288, 1997.

Penalty Algorithm

The penalty algorithm is similar to the “Integer ga Algorithm” on page 7-42. In its evaluation of the
fitness of an individual, ga computes a penalty value as follows:
+ If the individual is feasible, the penalty function is the fitness function.

» If the individual is infeasible, the penalty function is the maximum fitness function among feasible
members of the population, plus a sum of the constraint violations of the (infeasible) individual.

For details of the penalty function, see Deb [1].

Choose the penalty algorithm by setting the NonlinearConstraintAlgorithm option to
'penalty' using optimoptions. When you make this choice, ga solves the constrained
optimization problem as follows.

1 ga defaults to the @gacreationnonlinearfeasible creation function. This function attempts
to create a feasible population with respect to all constraints. ga creates enough individuals to
match the PopulationSize option. For details, see “Penalty Algorithm” on page 15-38.

2 ga overrides your choice of selection function, and uses @selectiontournament with two
individuals per tournament.

3 ga proceeds according to “How the Genetic Algorithm Works” on page 7-12, using the penalty
function as the fitness measure.

References

[1] Deb, Kalyanmoy. An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, 186(2-4), pp. 311-338, 2000.
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See Also

More About

. “Genetic Algorithm Terminology” on page 7-10
. “How the Genetic Algorithm Works” on page 7-12
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Create Custom Plot Function

In this section...

“About Custom Plot Functions” on page 7-56
“Creating the Custom Plot Function” on page 7-56
“Using the Custom Plot Function” on page 7-56
“How the Plot Function Works” on page 7-57

About Custom Plot Functions

If none of the plot functions that come with the software is suitable for the output you want to plot,
you can write your own custom plot function, which the genetic algorithm calls at each generation to
create the plot. This example shows how to create a plot function that displays the change in the best
fitness value from the previous generation to the current generation.

Creating the Custom Plot Function

To create the plot function for this example, copy and paste the following code into a new file in the
MATLAB Editor.

function state = gaplotchange(options, state, flag)
GAPLOTCHANGE Plots the logarithmic change in the best score from the
previous generation.

o° o o°

persistent last best % Best score in the previous generation

if(strcmp(flag, 'init')) % Set up the plot
x1lim([1,options.MaxGenerations]);

axx = gca;
axx.YScale = 'log';
hold on;

xlabel Generation
title('Log Absolute Change in Best Fitness Value')
end

best = min(state.Score);
if state.Generation ==
last best = best;
else
change = last best - best; % Change in best score
last best = best;
if change > 0 % Plot only when the fitness improves
plot(state.Generation, change, 'xr');

Best score in the current generation
Set last best to best.

%
%

end
end

Save the file as gaplotchange.m in a folder on the MATLAB path.

Using the Custom Plot Function

To use the custom plot function, include it in the options.
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rng(100) % For reproducibility
options = optimoptions('ga', 'PlotFcn', {@gaplotbestf,@gaplotchange});
[x,fval] = ga(@rastriginsfcn,2,[1,[1,[1,[1,[1,[1,[1,0ptions)

Best: 0.000421895 Mean: 2.46128
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Optimization terminated: maximum number of generations exceeded.
X =

-0.0003 0.0014

fval =
4.2189e-04

The plot shows only changes that are greater than 0, which are improvements in best fitness. The
logarithmic scale enables you to see small changes in the best fitness function that the upper plot
does not reveal.

How the Plot Function Works

The plot function uses information contained in the following structures, which the genetic algorithm
passes to the function as input arguments:

* options — The current options settings
* state — Information about the current generation
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flag — Current status of the algorithm

The most important lines of the plot function are the following:

persistent last best

Creates the persistent variable last best—the best score in the previous generation. Persistent
variables are preserved over multiple calls to the plot function.
xlim([1,options.MaxGenerations]);

axx = gca;
axx.YScale = 'log’';

Sets up the plot before the algorithm starts. options.MaxGenerations is the maximum number
of generations.

best = min(state.Score)
The field state.Score contains the scores of all individuals in the current population. The

variable best is the minimum score. For a complete description of the fields of the structure state,
see “Structure of the Plot Functions” on page 15-24.

change = last best - best

The variable change is the best score at the previous generation minus the best score in the
current generation.

if change > 0

Plot only if there is a change in the best fitness.
plot(state.Generation, change, 'xr')

Plots the change at the current generation, whose number is contained in state.Generation.

The code for gaplotchange contains many of the same elements as the code for gaplotbestf, the
function that creates the best fitness plot.

See Also

Related Examples

“Custom Output Function for Genetic Algorithm” on page 7-100
“Plot Options” on page 15-23
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Resume ga

By default, ga creates a new initial population each time you run it. However, you might get better
results by using the final population from a previous run as the initial population for a new run. To do
so, you must have saved the final population from the previous run by calling ga with the syntax

[x,fval,exitflag,output,final pop] = ga(@fitnessfcn,nvars);

The last output argument is the final population. To run ga using final pop as the initial population,
enter

options = optimoptions('ga’', 'InitialPop',final pop);
[x,fval,exitflag,output,final pop2] = ...
ga(@fitnessfcn,nvars, [1,[1,[1,[1,[1,[1,[1,0options);

You can then use final pop2, the final population from the second run, as the initial population for
a third run.

For example, minimize Ackley's function, a function of two variables.

rng(100) % For reproducibiliity
[x,fval,exitflag,output,final pop] = ga(@ackleyfcn,2);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
Examine the best function value.
disp(fval)
3.5527
Try to get a better solution by running ga from the final population.
options = optimoptions('ga', 'InitialPopulationMatrix"',final pop);

[x,fval2,exitflag2,output2,final pop2] = ...
ga(@ackleyfcn,2,[1,[1,[1,[1,[1,[1,[1,0options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
disp(fval2)
2.9886

The fitness function value improves significantly.

Try once again to improve the solution.
options.InitialPopulationMatrix = final pop2;

[x,fval3,exitflag3,output3,final pop3] = ...
ga(@ackleyfcn,2,[1,[1,[1,[1,[1,[1,[]1,0options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
disp(fval3)
2.9846

This time the improvement is insignificant.
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See Also

More About

. “How the Genetic Algorithm Works” on page 7-12
. “Reproduce Results” on page 7-64
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Options and Outputs

In this section...

“Running ga with the Default Options” on page 7-61
“Setting Options at the Command Line” on page 7-61

“Additional Output Arguments” on page 7-62

Running ga with the Default Options

To run the genetic algorithm with the default options, call ga with the syntax
[x,fval] = ga(@fitnessfun, nvars)

The input arguments to ga are

+ @fitnessfun — A function handle to the file that computes the fitness function. “Compute
Objective Functions” on page 2-2 explains how to write this file.

* nvars — The number of independent variables for the fitness function.

The output arguments are

* X — The final point
 fval — The value of the fitness function at x

For a description of additional input and output arguments, see the reference page for ga.

You can run the example described in “Minimize Rastrigin's Function” on page 7-3 from the command
line by entering

rng(l, 'twister') % for reproducibility
[x,fval] = ga(@rastriginsfcn,2)

This returns

Optimization terminated:
average change in the fitness value less than options.FunctionTolerance.

X =
-1.0421 -1.0018

fval =
2.4385

Setting Options at the Command Line

You can specify any of the options that are available for ga by passing options as an input argument
to ga using the syntax

[x,fval] = ga(@fitnessfun,nvars,[],[],[],[1,[],[],[],0options)
This syntax does not specify any linear equality, linear inequality, or nonlinear constraints.

You create options using the function optimoptions.
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options = optimoptions(@ga);

This returns options with the default values for its fields. ga uses these default values if you do not
pass in options as an input argument.

The value of each option is stored in a field of options, such as options.PopulationSize. You
can display any of these values by entering options followed by a period and the name of the field.
For example, to display the size of the population for the genetic algorithm, enter

options.PopulationSize
ans =
'50 when numberOfVariables <= 5, else 200’

To create options with a field value that is different from the default — for example to set
PopulationSize to 100 instead of its default value 50 — enter

options = optimoptions('ga', 'PopulationSize',100);

This creates options with all values set to their defaults except for PopulationSize, which is set
to 100.

If you now enter,
ga(@fitnessfun,nvars,[],[1,[1,[1,[1,[],[],options)
ga runs the genetic algorithm with a population size of 100.

If you subsequently decide to change another field in options, such as setting PLotFcn to
@gaplotbestf, which plots the best fitness function value at each generation, call optimoptions
with the syntax

options = optimoptions(options, 'PlotFcn',@plotbestf);

This preserves the current values of all fields of options except for PLotFcn, which is changed to
@plotbestf. Note that if you omit the input argument options, optimoptions resets
PopulationSize to its default value.

You can also set both PopulationSize and PlotFcn with the single command

options = optimoptions('ga', 'PopulationSize',100, 'PlotFcn',@plotbestf);

Additional Output Arguments

To get more information about the performance of the genetic algorithm, you can call ga with the
syntax

[x,fval,exitflag,output,population,scores] = ga(@fitnessfcn, nvars)
Besides x and fval, this function returns the following additional output arguments:

+ exitflag — Integer value corresponding to the reason the algorithm terminated

* output — Structure containing information about the performance of the algorithm at each
generation
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* population — Final population
* scores — Final scores

See the ga reference page for more information about these arguments.

See Also
ga

More About

. “Genetic Algorithm Options” on page 15-23
. “Population Diversity” on page 7-68
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Because the genetic algorithm is stochastic—that is, it makes random choices—you get slightly
different results each time you run the genetic algorithm. The algorithm uses the default MATLAB
pseudorandom number stream. For more information about random number streams, see
RandStream. Each time ga calls the stream, its state changes. So that the next time ga calls the
stream, it returns a different random number. This is why the output of ga differs each time you run
it.

If you need to reproduce your results exactly, you can call ga with an output argument that contains
the current state of the default stream, and then reset the state to this value before running ga again.
For example, to reproduce the output of ga applied to Rastrigin's function, call ga with the syntax

rng(l, 'twister') % for reproducibility
[x,fval,exitflag,output] = ga(@rastriginsfcn, 2);

Suppose the results are
x, fval,exitflag

X =
-1.0421 -1.0018

fval =
2.4385

exitflag =
1

The state of the stream is stored in output. rngstate. To reset the state, enter

stream = RandStream.getGlobalStream;
stream.State = output.rngstate.State;

If you now run ga a second time, you get the same results as before:
[x,fval,exitflag] = ga(@rastriginsfcn, 2)
Optimization terminated: average change in the fitness value less than options.FunctionTolerance

X =
-1.0421 -1.0018

fval =
2.4385

exitflag =
1

Note If you do not need to reproduce your results, it is better not to set the state of the stream, so
that you get the benefit of the randomness in the genetic algorithm.
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See Also

More About

. “Resume ga” on page 7-59
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fwal

The command-line interface enables you to run the genetic algorithm many times, with different
options settings, using a file. For example, you can run the genetic algorithm with different settings
for Crossover fraction to see which one gives the best results. The following code runs the function
ga 21 times, varying options.CrossoverFraction from 0 to 1 in increments of 0. 05, and records
the results.

options = optimoptions('ga', 'MaxGenerations',300, 'Display', 'none');

rng default % for reproducibility

record=[];

for n=0:.05:1
options = optimoptions(options, 'CrossoverFraction',n);
[x,fvall=ga(@rastriginsfcn,2,[1,[1,[1,[1,[1,[1,[]1,0options);
record = [record; fvall;

end

You can plot the values of fval against the crossover fraction with the following commands:

plot(0:.05:1, record);
xlabel('Crossover Fraction');
ylabel('fval')

The following plot appears.

1 1 1 1 1
] 0.1 0.2 0.3 0.4 0.5 0.6 07 0.e 0.9 1
Crossover Fraction

|:| | | 1

The plot suggests that you get the best results by setting options.CrossoverFraction to a value
somewhere between 0.4 and 0. 8.
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You can get a smoother plot of fval as a function of the crossover fraction by running ga 20 times

and averaging the values of fval for each crossover fraction. The following figure shows the
resulting plot.

fual

1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0y 0.8 0.8 1
Crossover Fraction

|:|5 1 1 1
a

This plot also suggests the range of best choices for options.CrossoverFractionis 0.4to 0.8.

See Also

More About

. “Constrained Minimization Using the Genetic Algorithm” on page 7-24
. “Coding and Minimizing a Fitness Function Using the Genetic Algorithm” on page 7-19
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Population Diversity

In this section...

“Importance of Population Diversity” on page 7-68
“Set Initial Range” on page 7-68
“Custom Plot Function and Linear Constraints in ga” on page 7-71

“Setting the Population Size” on page 7-75

Importance of Population Diversity

One of the most important factors that determines the performance of the genetic algorithm performs
is the diversity of the population. If the average distance between individuals is large, the diversity is
high; if the average distance is small, the diversity is low. Getting the right amount of diversity is a
matter of trial and error. If the diversity is too high or too low, the genetic algorithm might not
perform well.

This section explains how to control diversity by setting the initial range of the population. “Setting
the Amount of Mutation” on page 7-79 describes how the amount of mutation affects diversity.

This section also explains how to set the population size on page 7-75.

Set Initial Range

By default, ga creates a random initial population using a creation function. You can specify the range
of the vectors in the initial population in the InitialPopulationRange option.

Note: The initial range restricts the range of the points in the initial population by specifying the
lower and upper bounds. Subsequent generations can contain points whose entries do not lie in the
initial range. Set upper and lower bounds for all generations using the 1b and ub input arguments.

If you know approximately where the solution to a problem lies, specify the initial range so that it
contains your guess for the solution. However, the genetic algorithm can find the solution even if it
does not lie in the initial range, if the population has enough diversity.

This example shows how the initial range affects the performance of the genetic algorithm. The
example uses Rastrigin's function, described in “Minimize Rastrigin's Function” on page 7-3. The
minimum value of the function is 0, which occurs at the origin.

rng(l) % For reproducibility

fun = @rastriginsfcn;

nvar = 2;

options = optimoptions('ga', 'PlotFcn',{'gaplotbestf', 'gaplotdistance'}, ...
'"InitialPopulationRange',[1;1.1]);

[x,fval]l = ga(fun,nvar,[],[1,[1,[1,[1,[]1,[],0options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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Best: 1.99002 Mean: 2.1698
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The upper plot, which displays the best fitness at each generation, shows little progress in lowering

the fitness value. The lower plot shows the average distance between individuals at each generation,
which is a good measure of the diversity of a population. For this setting of initial range, there is too
little diversity for the algorithm to make progress.

Next, try setting the InitialPopulationRange to [1;100]. This time the results are more variable.
The current random number setting causes a fairly typical result.

options.InitialPopulationRange = [1;100];
[x,fvall = ga(fun,nvar,[],[1,[1,[1,[1,[1,[1,options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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Best: 4.08885 Mean: 2915.48
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This time, the genetic algorithm makes progress, but because the average distance between
individuals is so large, the best individuals are far from the optimal solution.

Now set the InitialPopulationRange to [1;2]. This setting is well-suited to the problem.

options.InitialPopulationRange = [1;2];
[x,fvall = ga(fun,nvar,[],[1,[1,[1,[1,[1,[1,options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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Best: 0.00111749 Mean: 5.66579
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The suitable diversity usually causes ga to return a better result than in the previous two cases.

Custom Plot Function and Linear Constraints in ga

This example shows how @gacreationlinearfeasible, the default creation function for linearly
constrained problems, creates a population for ga. The population is well-dispersed, and is biased to
lie on the constraint boundaries. The example uses a custom plot function.

Fitness Function

The fitness function is Lincontest6, included with your software. This is a quadratic function of two
variables:

[

Tj

flz) = 5 T2

£ILg 2 1 Ejf_:'

Custom Plot Function

Save the following code to a file on your MATLAB® path named gaplotshowpopulation2.
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function state = gaplotshowpopulation2(~,state,flag, fcn)
%sgaplotshowpopulation2 Plots the population and linear constraints in 2-d.
STATE = gaplotshowpopulation2(OPTIONS,STATE,FLAG) plots the population
in two dimensions.

Example:
fun = @lincontest6;
options = gaoptimset('PlotFcn', {{@gaplotshowpopulation2,fun}});
[x,fval,exitflag] = ga(fun,2,A,b,[],[1,lb,[]1,[],0options);

d° 0° o° 0 o° o° o°

o

s This plot function works in 2-d only

if size(state.Population,2) > 2
return;

end

if nargin < 4
fen = [1;

end

% Dimensions to plot

dimensionsToPlot = [1 2];

switch flag

% Plot initialization

case 'init'
pop = state.Population(:,dimensionsToPlot);
plotHandle = plot(pop(:,1),pop(:,2),'*");
set(plotHandle, 'Tag', 'gaplotshowpopulation2')
title('Population plot in two dimension', 'interp', 'none')
xlabelStr = sprintf('%s %s', 'Variable ', num2str(dimensionsToPlot(1)))
ylabelStr = sprintf('%s %s', 'Variable ', num2str(dimensionsToPlot(2)))
xlabel(xlabelStr, 'interp', 'none');
ylabel(ylabelStr, 'interp', 'none');
hold on;

’
’

% plot the inequalities

plot([0 1.5],[2 0.5],'m-.") % x1 + x2 <= 2
plot([0 1.5],[1 3.5/2],'m-."); % -x1 + 2*x2 <= 2
plot([0 1.5],[3 O],'m-."); % 2*x1 + x2 <= 3

% plot lower bounds

plot([0 0], [0 2],'m-."); % b =] 0 0];
plot([®6 1.5], [0 0],'m-."); % 1lb =1 0 0];
set(gca, 'xlim',[-0.7,2.2])

set(gca, 'ylim',[-0.7,2.71)

axx = gcf;
% Contour plot the objective function
if ~isempty(fcn)
range = [-0.5,2;-0.5,2];
pts = 100;
span = diff(range')/(pts - 1);
X range(1l,1): span(l) : range(l,2);
y range(2,1): span(2) : range(2,2);

pop = zeros(pts * pts,2);
values = zeros(pts,1);
k =1;
for i = 1l:pts
for j = l:pts
pop(k,:) = [x(i),y(j)];
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values(k) = fcn(pop(k,:));
k =k + 1;
end
end
values = reshape(values,pts,pts);
contour(x,y,values);
colorbar
end
% Show the initial population
ax = gca;
fig = figure;
copyobj (ax, fig);colorbar
% Pause for three seconds to view the initial plot, then resume
figure(axx)
pause(3);
case 'iter'
pop = state.Population(:,dimensionsToPlot);
plotHandle = findobj(get(gca, 'Children'),'Tag', 'gaplotshowpopulation2');
set(plotHandle, 'Xdata',pop(:,1), 'Ydata',pop(:,2));
end

The custom plot function plots the lines representing the linear inequalities and bound constraints,
plots level curves of the fitness function, and plots the population as it evolves. This plot function
expects to have not only the usual inputs (options,state, flag), but also a function handle to the
fitness function, @lincontest6 in this example. To generate level curves, the custom plot function
needs the fitness function.

Problem Constraints
Include bounds and linear constraints.
A=11,1;-1,2;2,1];

b =12;2;3];
b = zeros(2,1);

Options to Include Plot Function

Set options to include the plot function when ga runs.

options = optimoptions('ga', 'PlotFcns',...
{{@gaplotshowpopulation2,@lincontest6}});

Run Problem and Observe Population

The initial population, in the first plot, has many members on the linear constraint boundaries. The
population is reasonably well-dispersed.

rng default % for reproducibility
[x,fval] = ga(@lincontest6,2,A,b,[1,[]1,1b,[1,[],0options);

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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Population plot in two dimension
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Population plot in two dimension
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ga converges quickly to a single point, the solution.

Setting the Population Size

The Population size field in Population options determines the size of the population at each
generation. Increasing the population size enables the genetic algorithm to search more points and
thereby obtain a better result. However, the larger the population size, the longer the genetic

algorithm takes to compute each generation.

Note You should set Population size to be at least the value of Number of variables, so that the

individuals in each population span the space being searched.

You can experiment with different settings for Population size that return good results without

taking a prohibitive amount of time to run.

See Also

More About

. “Options and Outputs” on page 7-61
. “Global vs. Local Optimization Using ga” on page 7-86
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Fitness Scaling
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In this section...

“Scaling the Fitness Scores” on page 7-76
“Comparing Rank and Top Scaling” on page 7-77

Scaling the Fitness Scores

Fitness scaling converts the raw fitness scores that are returned by the fitness function to values in a
range that is suitable for the selection function. The selection function uses the scaled fitness values
to select the parents of the next generation. The selection function assigns a higher probability of
selection to individuals with higher scaled values.

The range of the scaled values affects the performance of the genetic algorithm. If the scaled values
vary too widely, the individuals with the highest scaled values reproduce too rapidly, taking over the
population gene pool too quickly, and preventing the genetic algorithm from searching other areas of
the solution space. On the other hand, if the scaled values vary only a little, all individuals have
approximately the same chance of reproduction and the search will progress very slowly.

The default fitness scaling option, Rank, scales the raw scores based on the rank of each individual
instead of its score. The rank of an individual is its position in the sorted scores: the rank of the most
fit individual is 1, the next most fit is 2, and so on. The rank scaling function assigns scaled values so
that

* The scaled value of an individual with rank n is proportional to 1/y/n.

* The sum of the scaled values over the entire population equals the number of parents needed to
create the next generation.

Rank fitness scaling removes the effect of the spread of the raw scores.

The following plot shows the raw scores of a typical population of 20 individuals, sorted in increasing
order.
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The following plot shows the scaled values of the raw scores using rank scaling.
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Secaled Values Using Rank Scaling
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Because the algorithm minimizes the fitness function, lower raw scores have higher scaled values.
Also, because rank scaling assigns values that depend only on an individual's rank, the scaled values
shown would be the same for any population of size 20 and number of parents equal to 32.

Comparing Rank and Top Scaling

To see the effect of scaling, you can compare the results of the genetic algorithm using rank scaling
with one of the other scaling options, such as Top. By default, top scaling assigns 40 percent of the
fittest individuals to the same scaled value and assigns the rest of the individuals to value 0. Using
the default selection function, only 40 percent of the fittest individuals can be selected as parents.

The following figure compares the scaled values of a population of size 20 with number of parents
equal to 32 using rank and top scaling.
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Because top scaling restricts parents to the fittest individuals, it creates less diverse populations than
rank scaling. The following plot compares the variances of distances between individuals at each
generation using rank and top scaling.

Variance af Distance Balwsean Indviduals Using Rank and Top Scaling
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See Also

External Websites
. “How the Genetic Algorithm Works” on page 7-12
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Vary Mutation and Crossover

In this section...

“Setting the Amount of Mutation” on page 7-79
“Setting the Crossover Fraction” on page 7-81

“Comparing Results for Varying Crossover Fractions” on page 7-84

Setting the Amount of Mutation

The genetic algorithm applies mutations using the MutationFcn option. The default mutation option,
@mutationgaussian, adds a random number, or mutation, chosen from a Gaussian distribution, to
each entry of the parent vector. Typically, the amount of mutation, which is proportional to the
standard deviation of the distribution, decreases at each new generation. You can control the average
amount of mutation that the algorithm applies to a parent in each generation through the Scale and
Shrink inputs that you include in a cell array:

options = optimoptions(‘ga‘,...
'MutationFcn',{@mutationgaussian Scale Shrink});

Scale and Shrink are scalars with default values 1 each.

* Scale controls the standard deviation of the mutation at the first generation. This value is Scale
multiplied by the range of the initial population, which you specify by the
InitialPopulationRange option.

* Shrink controls the rate at which the average amount of mutation decreases. The standard
deviation decreases linearly so that its final value equals 1 - Shrink times its initial value at the
first generation. For example, if Shrink has the default value of 1, then the amount of mutation
decreases to 0 at the final step.

You can see the effect of mutation by selecting the plot functions @gaplotdistance and
@gaplotrange, and then running the genetic algorithm on a problem such as the one described in
“Minimize Rastrigin's Function” on page 7-3. The following figure shows the plot after setting the
random number generator.

rng default % For reproducibility

options = optimoptions('ga', 'PlotFcn',{@gaplotdistance,@gaplotrange},...
'MaxStallGenerations',200); % to get a long run

[x,fval]l = ga(@rastriginsfcn,2,[1,[1,[1,[1,[1,[1,[1,0options);
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Average Distance Between Individuals
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The upper plot displays the average distance between points in each generation. As the amount of
mutation decreases, so does the average distance between individuals, which is approximately 0 at
the final generation. The lower plot displays a vertical line at each generation, showing the range
from the smallest to the largest fitness value, as well as mean fitness value. As the amount of
mutation decreases, so does the range. These plots show that reducing the amount of mutation
decreases the diversity of subsequent generations.

For comparison, the following figure shows the same plots when you set Shrink to 0.5.
options = optimoptions('ga',options,...

'MutationFcn',{@mutationgaussian,l,.5});
[x,fval]l = ga(@rastriginsfcn,2,[1,[1,[1,[1,[1,[1,[1,0options);
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Average Distance Between Individuals
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This time, the average amount of mutation decreases by a factor of 1/2 by the final generation. As a
result, the average distance between individuals decreases less than before.
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Setting the Crossover Fraction

The CrossoverFraction option specifies the fraction of each population, other than elite children,
that are made up of crossover children. A crossover fraction of 1 means that all children other than
elite individuals are crossover children, while a crossover fraction of @ means that all children are
mutation children. The following example show that neither of these extremes is an effective strategy
for optimizing a function.

The example uses the fitness function whose value at a point is the sum of the absolute values of the
coordinates at the points. That is,

fx X, o xn) = [xa| + [xg] + - + [Xq] .
You can define this function as an anonymous function by setting the fitness function to
@(x) sum(abs(x))
Run the example with the default value of 0.8 as the CrossoverFraction option.
fun = @(x) sum(abs(x));
nvar = 10;

options = optimoptions(‘'ga‘,...
'InitialPopulationRange',[-1;1],...
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'PlotFcn',{@gaplotbestf,@gaplotdistance});
rng(14, 'twister') % For reproducibility
[x,fvall = ga(fun,nvar,[],[1,[1,[1,[1,[1,[1,options)

Best: 0.0799498 Mean: 4.93529

Fitness value
= (=]

i

. Best fitness
* Mean fitness
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Generation

1000

Optimization terminated: average change in the fitness value less than options.FunctionTolerance

X =

-0.0020 -0.0134 -0.0067 -0.0028 -0.0241

fval =
0.0799

Crossover Without Mutation

-0.0118

0.0021

0.0113

-0.0021

To see how the genetic algorithm performs when there is no mutation, set the CrossoverFraction

option to 1.0 and rerun the solver.

options.CrossoverFraction = 1;
[x,fval]l = ga(fun,nvar,[]1,[1,[1,[1,[1,[1,[]1,options)

-0.(
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I

i

Fitness value

Best: 0.311407 Mean: 0.311407

Best fitness
Mean fitness
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Average Distance

[+ 'TLLE]

200 300 400 500 GO0 00 B00
Generation

Average Distance Between Individuals

100

-0.0275

-0.0043

fval =

0.3114

200 300 400 500 GO0 o0 800
Generation
0.0372 -0.0118 -0.0377 -0.0444

800 1000
800 1000
-0.0258 -0.0520 0.0174 0.

Optimization terminated: average change in the fitness value less than options.FunctionTolerance

X =

0.4014 0.0538

fval =

3.0843

0.7824 0.1930 0.0513 -0.4801

0.9988 -0.0059 0.0875 0.

In this case, the algorithm selects genes from the individuals in the initial population and recombines
them. The algorithm cannot create any new genes because there is no mutation. The algorithm
generates the best individual that it can using these genes at generation number 8, where the best
fitness plot becomes level. After this, it creates new copies of the best individual, which are then are
selected for the next generation. By generation number 17, all individuals in the population are the
same, namely, the best individual. When this occurs, the average distance between individuals is 0.
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Since the algorithm cannot improve the best fitness value after generation 8, it stalls after 50 more
generations, because Stall generations is set to 50.

Mutation Without Crossover

To see how the genetic algorithm performs when there is no crossover, set the CrossoverFraction
option to 0.

options.CrossoverFraction = 0;
[x,fval]l = ga(fun,nvar,[],[1,[1,[1,[1,[1,[]1,options)

a0 Best: 3.08429 Mean: 23.6988

. Best fitness

m . Mean fitness
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Generation
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Generation

In this case, the random changes that the algorithm applies never improve the fitness value of the
best individual at the first generation. While it improves the individual genes of other individuals, as
you can see in the upper plot by the decrease in the mean value of the fitness function, these
improved genes are never combined with the genes of the best individual because there is no
crossover. As a result, the best fitness plot is level and the algorithm stalls at generation number 50.

Comparing Results for Varying Crossover Fractions

The example deterministicstudy.m, which is included in the software, compares the results of
applying the genetic algorithm to Rastrigin's function with the CrossoverFraction option set to

0, .2, .4, .6, .8, and 1. The example runs for 10 generations. At each generation, the example plots
the means and standard deviations of the best fitness values in all the preceding generations, for
each value of the CrossoverFraction option.

To run the example, enter
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deterministicstudy

at the MATLAB prompt. When the example is finished, the plots appear as in the following figure.

After 10 iterations
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The lower plot shows the means and standard deviations of the best fitness values over 10
generations, for each of the values of the crossover fraction. The upper plot shows a color-coded
display of the best fitness values in each generation.

For this fitness function, setting Crossover fraction to 0.8 yields the best result. However, for
another fitness function, a different setting for Crossover fraction might yield the best result.

See Also

More About
. “How the Genetic Algorithm Works” on page 7-12
. “Custom Output Function for Genetic Algorithm” on page 7-100
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Global vs. Local Optimization Using ga
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Searching for a Global Minimum

Sometimes the goal of an optimization is to find the global minimum or maximum of a function—a
point where the function value is smaller or larger at any other point in the search space. However,
optimization algorithms sometimes return a local minimum—a point where the function value is
smaller than at nearby points, but possibly greater than at a distant point in the search space. The
genetic algorithm can sometimes overcome this deficiency with the right settings.

As an example, consider the following function.

2

—exp for x =100,

flx) = ~(100)
1)

0
—exp(—1)+ (x—100)(x — 102) for x > 100.
Plot the function.

t =-10:.1:103;
for ii = 1l:length(t)
y(ii) = two min(t(ii));
end
plot(t,y)

1.5
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The function has two local minima, one at x = 0, where the function value is -1, and the other at
x = 101, where the function value is-1 - 1/e. Since the latter value is smaller, the global
minimum occurs atx = 101.

Run ga Using Default Parameters

The code for the two_min helper function is at the end of this example on page 7-0 . Run ga with
default parameters to minimize the two min function. Use the gaplotldrange helper function
(included at the end of this example on page 7-0 ) to plot the range of the ga population at each
iteration.

rng default % For reproducibility
options = optimoptions('ga', 'PlotFcn',@gaplotldrange);
[x,fval] = ga(@two_min,1,[],[1,[1,[],01,[1,[],options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Range of Population, Mean
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Generation
X = -0.0688
fval = -1.0000

The genetic algorithm returns a point very close to the local minimum at x = 0. Note that all
individuals lie between -60 and 60. The population never explores points near the global minimum at
x = 101.
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Increase Initial Range

One way to make the genetic algorithm explore a wider range of points—that is, to increase the
diversity of the populations—is to increase the initial range. The initial range does not have to include
the point x = 101, but it must be large enough so that the algorithm generates individuals near

x = 101. Set the InitialPopulationRange option to [-10;90] and rerun the solver.

options.InitialPopulationRange = [-10;90];
[x,fval] = ga(@two_min,1,[1,[1,[1,[1,[1,[1,[]1,options)

Optimization terminated: maximum number of generations exceeded.

Range of Population, Mean
00T —
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Generation
X = 100.9783

fval = -1.3674

This time, the custom plot shows a much wider range of individuals. There are individuals near 101
from early on, and the population mean begins to converge to 101.

Helper Functions

This code creates the two _min helper function.

function y = two min(x)
if x <= 100
y = -exp(-(x/100)"2);
else
y = -exp(-1) + (x-100)*(x-102);
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end
end

This code creates the gaplotldrange helper function.

function state = gaplotldrange(options,state,flag)

%sgaplotldrange Plots the mean and the range of the population.

STATE = gaplotldrange(OPTIONS,STATE,FLAG) plots the mean and the range
(highest and the lowest) of individuals (1-D only).

Example:
Create options that use gaplotldrange
as the plot function

options = optimoptions('ga

0° 0° 0% 0P o° o° o°

, 'PlotFcn',@gaplotldrange);

o°

Copyright 2012-2014 The MathWorks, Inc.

if isinf(options.MaxGenerations) || size(state.Population,2) > 1
title('Plot Not Available', 'interp', 'none');
return;

end

generation = state.Generation;
score = state.Population;
smean = mean(score);

Y = smean;
L = smean - min(score);
U = max(score) - smean;

switch flag

case 'init'
set(gca, 'xlim',[1,options.MaxGenerations+1]);
plotRange = errorbar(generation,Y,L,U);
set(plotRange, 'Tag', 'gaplotldrange');
title('Range of Population, Mean', 'interp', 'none')
xlabel('Generation', 'interp', 'none')

case 'iter'
plotRange = findobj(get(gca, 'Children'),'Tag', 'gaplotldrange');

newX = [get(plotRange, 'Xdata') generation];
newY = [get(plotRange, 'Ydata') YI;
newL = [get(plotRange, 'Ldata') L];
newlU = [get(plotRange, 'Udata') U];
set(plotRange, 'Xdata',newX, 'Ydata',newY, 'Ldata',newlL, 'Udata’,newl);
end
end
See Also
More About

. “What Is Global Optimization?” on page 1-25
. “Population Diversity” on page 7-68
. “Isolated Global Minimum” on page 4-85
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Hybrid Scheme in the Genetic Algorithm

This example shows how to use a hybrid scheme to optimize a function using the genetic algorithm
and another optimization method. ga can quickly reach a neighborhood of a local minimum, but it can
require many function evaluations to achieve convergence. To speed the solution process, first run ga
for a small number of generations to approach an optimum point. Then use the solution from ga as
the initial point for another optimization solver to perform a faster and more efficient local search.

Rosenbrock's Function

This example uses Rosenbrock's function (also known as Dejong's second function) as the fitness
function:

F0) = 100(x(2) = x(1)%)? + (1 = x(1)).

Rosenbrock's function is notorious in optimization because of the slow convergence most methods
exhibit when trying to minimize this function. Rosenbrock's function has a unique minimum at the
point x* = (1,1), where it has a function value f(x*) = 0.

The code for Rosenbrock's function is in the dejong2fcn file.

type dejong2fcn.m

function scores = dejong2fcn(pop)

%DEJONG2FCN Compute DeJongs second function.

%This function is also known as Rosenbrock's function
% Copyright 2003-2004 The MathWorks, Inc.

scores = zeros(size(pop,1),1);

for i = 1: 51ze(pop 1)

p = pop(i,:);

scores(l) = 100 * (p(1)"2 - p(2)) *2 + (1 - p(1))"2;
end

Plot Rosenbrock's function over the range -2 <= x(1) <= 2; -2 <= x(2) <=2.

plotobjective(@dejong2fcn,[-2 2;-2 2]);
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3000
2000 -

1000

Genetic Algorithm Solution

First, use ga alone to find the minimum of Rosenbrock's function.

FitnessFcn = @dejong2fcn;
numberOfVariables = 2;

Include plot functions to monitor the optimization process.
options = optimoptions(@ga, 'PlotFcn', {@gaplotbestf,@gaplotstopping});
Set the random number stream for reproducibility, and run ga using the options.

rng default
[x,fval] = ga(FitnessFcn,numberOfVariables,[1,[1,[1,[1,[1,[1,[]1,options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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g w0’ Best: 0.491 302 Mean: 664119
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Using the default stopping criteria, ga does not provide a very accurate solution. You can change the
stopping criteria to try to find a more accurate solution, but ga requires many function evaluations to
approach the global optimum x* = (1,1).

Instead, perform a more efficient local search that starts where ga stops by using the hybrid function
option in ga.

Adding a Hybrid Function

A hybrid function begins from the point where ga stops. Hybrid function choices are fminsearch,
patternsearch, or fminunc. Because this optimization example is smooth and unconstrained, use
fminunc as the hybrid function. Provide fminunc with plot options as an additional argument when
specifying the hybrid function.

fminuncOptions = optimoptions(@fminunc, 'PlotFcn',{'optimplotfval’, 'optimplotx'});
options = optimoptions(options, 'HybridFcn', {@fminunc, fminuncOptions});

Run ga again with fminunc as the hybrid function.

[x,fval,exitflag,output] = ga(FitnessFcn,numberOfvVariables,[]1,[1,[1,[1,[1,[]1,[],options)
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Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Current Function Value: 1.72147e-11

o
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504t ¢
B
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0 2 4 & B 10 12 14 16 18
Iteration
1 Current Point

Current point
=
wn

1 2
Mumber of variables: 2

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.
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X = 1Ix2
1.0000 1.0000
fval = 1.7215e-11
exitflag =1
output = struct with fields:
problemtype: 'unconstrained'
rngstate: [1x1 struct]
generations: 51
funccount: 2534
message: 'Optimization terminated: average change in the fitness value less than optio
maxconstraint: []
hybridflag: 1

The ga plot shows the best and mean values of the population in every generation. The plot title
identifies the best value found by ga when it stops. The hybrid function fminunc starts from the best
point found by ga. The fminunc plot shows the solution x and fval, which result from using ga and
fminunc together. In this case, using a hybrid function improves the accuracy and efficiency of the
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solution. The output.hybridflag field shows that fminunc stops with exit flag 1, indicating that x
is a true local minimum.

See Also

More About
. “Options and Outputs” on page 7-61
. “Global vs. Local Optimization Using ga” on page 7-86
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Set Maximum Number of Generations and Stall Generations

The MaxGenerations option determines the maximum number of generations the genetic algorithm
takes; see “Stopping Conditions for the Algorithm” on page 7-15. Increasing MaxGenerations can
improve the final result. The related MaxStallGenerations option controls the number of steps ga
looks over to see whether it is making progress. Increasing MaxStallGenerations can enable ga to
continue when the algorithm needs more function evaluations to find a better solution.

For example, optimize rastriginsfcn using 10 variables with default parameters. To observe the
solver's progress as it approaches the minimum value of 0, optimize the logarithm of the function.

rng default % For reproducibility

fun = @(x)log(rastriginsfcn(x));

nvar = 10;

options = optimoptions('ga', 'PlotFcn',"gaplotbestf");
[x,fvall = ga(fun,nvar,[]1,[1,[1,[1,[1,[1,[1,0options)

Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Best: 1.45396 Mean: 4.52748
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fval = 1.4540
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As ga approaches the optimal point at the origin, it stalls. To obtain a better solution, set the stall

generation limit to 500 and the generation limit to 1000.

options = optimoptions(options, 'MaxStallGenerations',500, 'MaxGenerations',1000);

rng default % For reproducibility
[x,fvall = ga(fun,nvar,[],[1,[1,[1,0[1,[1,[1,options)

Optimization terminated: maximum number of generations exceeded

Best: -3.14667 Mean: -1.31642

. Best fitness
- Mean fitness

Fitness value

5_ -
2T -\-!-
"=
_4 i i i i i i i i i i
1] 100 200 300 400 500 600 T00 800 900 1000
Generation
X = 1x10
0.0025 -0.0039 0.0021 -0.0030 -0.0053 0.0033 0.0080
fval = -3.1467

This time the solver approaches the true minimum much more closely.

See Also

More About
. “Options and Outputs” on page 7-61
. “Population Diversity” on page 7-68
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Vectorize the Fitness Function

7-98

In this section...

“Vectorize for Speed” on page 7-98
“Vectorized Constraints” on page 7-99

Vectorize for Speed

The genetic algorithm usually runs faster if you vectorize the fitness function. This means that the
genetic algorithm only calls the fitness function once, but expects the fitness function to compute the
fitness for all individuals in the current population at once. To vectorize the fitness function,

* Write the file that computes the function so that it accepts a matrix with arbitrarily many rows,
corresponding to the individuals in the population. For example, to vectorize the function

f(xl,xz)=X%—2x1x2+6x1+x%—6x2
write the file using the following code:
z =x(:,1).72 - 2*x(:,1).*x(:,2) + 6*x(:,1) + x(:,2).72 - 6*x(:,2);

The colon in the first entry of x indicates all the rows of x, so that x(:, 1) is a vector. The .”
and . * operators perform elementwise operations on the vectors.
* At the command line, set the UseVectorized option to true using optimoptions.

* Inthe Optimize Live Editor task, ensure that the Algorithm settings > Evaluate functions
vectorized setting has a check mark.

= Specify solver options \

0 Algorithm settings Evaluate functions vectorized w | [v

Note The fitness function, and any nonlinear constraint function, must accept an arbitrary number of
rows to use the Vectorize option. ga sometimes evaluates a single row even during a vectorized
calculation.

The following comparison, run at the command line, shows the improvement in speed with
vectorization.

options = optimoptions('ga', 'PopulationSize',2000);
tic;ga(@rastriginsfcn,20,[1,01,[1,[1,[1,[1,[]1,0options);toc
Optimization terminated: maximum number of generations exceeded.
Elapsed time is 12.054973 seconds.

options = optimoptions(options, 'UseVectorized', true);
tic;
ga(@rastriginsfcn,20,[]1,[1,[1,[1,[1,[1,[]1,0options);
toc

Optimization terminated: maximum number of generations exceeded.
Elapsed time is 1.860655 seconds.
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Vectorized Constraints

If there are nonlinear constraints, the objective function and the nonlinear constraints all need to be
vectorized in order for the algorithm to compute in a vectorized manner.

“Vectorize the Objective and Constraint Functions” on page 5-77 contains an example of how to
vectorize both for the solver patternsearch. The syntax is nearly identical for ga. The only
difference is that patternsearch can have its patterns appear as either row or column vectors; the
corresponding vectors for ga are the population vectors, which are always rows.

See Also

More About

. “How to Use Parallel Processing in Global Optimization Toolbox” on page 14-11
. “Compute Objective Functions” on page 2-2
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Custom Output Function for Genetic Algorithm

This example shows the use of a custom output function in the genetic algorithm solver ga. The
custom output function performs the following tasks:

» Plot the range of the first two components of the population as a rectangle. The left and lower
sides of the rectangle are at the minima of x (1) and x(2) respectively, and the right and upper
sides are at the respective maxima.

* Halt the iterations when the best function value drops below 0.1 (the minimum value of the
objective function is 0).

* Record the entire population in a variable named gapopulationhistory in your MATLAB®
workspace every 10 generations.

* Modify the initial crossover fraction to the custom value 0.2, and then update it back to the
default 0.8 after 25 generations. The initial setting of 0.2 causes the first several iterations to
search primarily at random via mutation. The later setting of 0.8 causes the following iterations
to search primarily via combinations of existing population members.

Objective Function
The objective function is for four-dimensional x whose first two components are integer-valued.
function f = gaintobj(x)

f rastriginsfcen([x(1)-6 x(2)-13]1);
f f + rastriginsfcn([x(3)-3*pi x(4)-5*pi]);

Output Function

The custom output function sets up the plot during initialization, and maintains the plot during
iterations. The output function also pauses the iterations for 0. 1s so you can see the plot as it
develops.

function [state,options,optchanged] = gaoutfun(options,state,flag)
persistent hl history r

optchanged = false;

switch flag

case 'init'
hl = figure;
ax = gca;
ax.XLim = [0 21];
ax.YLim = [0 21];
11 = min(state.Population(:,1));
ml = max(state.Population(:,1));
12 = min(state.Population(:,2));
m2 = max(state.Population(:,2));

r = rectangle(ax, 'Position',[11 12 ml-11 m2-12]);
history(:,:,1) = state.Population;
assignin('base', 'gapopulationhistory',history);
case 'iter'

% Update the history every 10 generations.
if rem(state.Generation,10) ==

ss = size(history,3);

history(:,:,ss+1l) = state.Population;
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assignin('base’, 'gapopulationhistory',history);
end
% Find the best objective function, and stop if it is low.

ibest = state.Best(end);

ibest = find(state.Score == ibest,1, 'last');
bestx = state.Population(ibest,:);

bestf = gaintobj(bestx);

if bestf <= 0.1
state.StopFlag = 'y';
disp('Got below 0.1")

end

% Update the plot.

figure(hl)

11 min(state.Population(:,

ml max (state.Population(:,

12 min(state.Population(:,

m2 = max(state.Population(:,

r.Position = [11 12 m1-11 m2
pause(0.1)

% Update the fraction of mutation and crossover after 25 generations.

if state.Generation == 25
options.CrossoverFraction = 0.8;
optchanged = true;

(:
(:
(:
(:

end
case ‘'done’
% Include the final population in the history.
ss = size(history,3);
history(:,:,ss+1) = state.Population;
assignin('base', 'gapopulationhistory',history);
end

Problem Setup and Solution

Set the lower and upper bounds.

b
ub

[11-30 -30];
[20 20 70 70];

Set the integer variables and number of variables.

intcon [12];

nvar = Z;
Set options to call the custom output function, and to initially have little crossover.
options = optimoptions('ga', 'OutputFcn',@gaoutfun, 'CrossoverFraction',0.2);
For reproducibility, set the random number generator.

rng default

Set the objective function and call the solver.

fun = @gaintobj;
[x,fval]l = ga(fun,nvar,[]1,[1,[1,[]1,lb,ub,[],intcon,options)

Got below 0.1
Optimization terminated: y
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6.0000

fval =

0.0059

The output function halted the solver.

View the size of the recorded history.

disp(size(gapopulationhistory))
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There are six records of the 40-by-4 population matrix (40 individuals, each a 4-element row vector).

See Also

Related Examples

. “Create Custom Plot Function” on page 7-56
. “Output Function Options” on page 15-41
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Custom Data Type Optimization Using the Genetic Algorithm

This example shows how to use the genetic algorithm to minimize a function using a custom data
type. The genetic algorithm is customized to solve the traveling salesman problem.

Traveling Salesman Problem

The traveling salesman problem is an optimization problem where there is a finite number of cities,
and the cost of travel between each city is known. The goal is to find an ordered set of all the cities
for the salesman to visit such that the cost is minimized. To solve the traveling salesman problem, we
need a list of city locations and distances, or cost, between each of them.

Our salesman is visiting cities in the United States. The file usborder.mat contains a map of the
United States in the variables x and y, and a geometrically simplified version of the same map in the
variables xx and yy.

load('usborder.mat', 'x',"'y"', 'xx',"'yy');
plot(x,y, 'Color','red"'); hold on;
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We will generate random locations of cities inside the border of the United States. We can use the
inpolygon function to make sure that all the cities are inside or very close to the US boundary.

cities = 40;

locations = zeros(cities,?2);
n=1;

while (n <= cities)
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Xp = rand*1.5;

yp = rand;

if inpolygon(xp,yp,XxX,yy)
locations(n,1l) = xp;
locations(n,2) = yp;

n = n+l;
end
end
plot(locations(:,1),locations(:,2), 'bo");
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Blue circles represent the locations of the cities where the salesman needs to travel and deliver or
pickup goods. Given the list of city locations, we can calculate the distance matrix for all the cities.

distances = zeros(cities);
for countl=1l:cities,
for count2=1:countl,

x1 = locations(countl,l);
yl = locations(countl,2);
x2 = locations(count2,1);
y2 = locations(count2,2);

distances(countl,count2)=sqrt((x1-x2)"2+(yl-y2)"2);
distances(count2,countl)=distances(countl, count2);
end;
end;
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Customizing the Genetic Algorithm for a Custom Data Type

By default, the genetic algorithm solver solves optimization problems based on double and binary
string data types. The functions for creation, crossover, and mutation assume the population is a
matrix of type double, or logical in the case of binary strings. The genetic algorithm solver can also
work on optimization problems involving arbitrary data types. You can use any data structure you like
for your population. For example, a custom data type can be specified using a MATLAB® cell array. In
order to use ga with a population of type cell array you must provide a creation function, a crossover
function, and a mutation function that will work on your data type, e.g., a cell array.

Required Functions for the Traveling Salesman Problem

This section shows how to create and register the three required functions. An individual in the
population for the traveling salesman problem is an ordered set, and so the population can easily be
represented using a cell array. The custom creation function for the traveling salesman problem will
create a cell array, say P, where each element represents an ordered set of cities as a permutation
vector. That is, the salesman will travel in the order specified in P{i}. The creation function will
return a cell array of size PopulationSize.

type create permutations.m

function pop = create permutations(NVARS,FitnessFcn,options)
%CREATE_PERMUTATIONS Creates a population of permutations.

POP = CREATE_PERMUTATION(NVARS,FITNESSFCN,OPTIONS) creates a population
of permutations POP each with a length of NVARS.

The arguments to the function are
NVARS: Number of variables
FITNESSFCN: Fitness function
OPTIONS: Options structure used by the GA

o o° o° o o° o° o°

o°

Copyright 2004-2007 The MathWorks, Inc.

totalPopulationSize = sum(options.PopulationSize);
n = NVARS;
pop = cell(totalPopulationSize,1);
for i = 1l:totalPopulationSize
pop{i} = randperm(n);
end

The custom crossover function takes a cell array, the population, and returns a cell array, the children
that result from the crossover.

type crossover permutation.m

function xoverKids = crossover permutation(parents,options,NVARS,
FitnessFcn,thisScore,thisPopulation)

CROSSOVER PERMUTATION Custom crossover function for traveling salesman.
XOVERKIDS = CROSSOVER PERMUTATION(PARENTS,OPTIONS,NVARS, ...
FITNESSFCN, THISSCORE, THISPOPULATION) crossovers PARENTS to produce

the children XOVERKIDS.

The arguments to the function are
PARENTS: Parents chosen by the selection function
OPTIONS: Options created from OPTIMOPTIONS

0® 0% o° o° o° o° o° o°
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NVARS: Number of variables

FITNESSFCN: Fitness function

STATE: State structure used by the GA solver

THISSCORE: Vector of scores of the current population
THISPOPULATION: Matrix of individuals in the current population

d° o° o° o° o°

o°

Copyright 2004-2015 The MathWorks, Inc.

nKids = length(parents)/2;
xoverKids = cell(nKids,1); % Normally zeros(nKids,NVARS);
index = 1;

for i=1:nKids
% here is where the special knowledge that the population is a cell
parent = thisPopulation{parents(index)};
index = index + 2;

% Flip a section of parentl.

pl = ceil((length(parent) -1) * rand);

p2 = pl + ceil((length(parent) - pl- 1) * rand);

child = parent;

child(pl:p2)

xoverKids{i}
end

fliplr(child(pl:p2));
child; % Normally, xoverKids(i,:);

s array is used. Normally, this would be thisPopulation(parents(index),:)

’

The custom mutation function takes an individual, which is an ordered set of cities, and returns a

mutated ordered set.

type mutate permutation.m

function mutationChildren = mutate permutation(parents ,options,NVARS,
FitnessFcn, state, thisScore,thisPopulation,mutationRate)

MUTATE PERMUTATION Custom mutation function for traveling salesman.
MUTATIONCHILDREN = MUTATE PERMUTATION(PARENTS,OPTIONS,NVARS,
FITNESSFCN,STATE, THISSCORE, THISPOPULATION,MUTATIONRATE) mutate the
PARENTS to produce mutated children MUTATIONCHILDREN.

The arguments to the function are
PARENTS: Parents chosen by the selection function
OPTIONS: Options created from OPTIMOPTIONS
NVARS: Number of variables
FITNESSFCN: Fitness function
STATE: State structure used by the GA solver
THISSCORE: Vector of scores of the current population
THISPOPULATION: Matrix of individuals in the current population
MUTATIONRATE: Rate of mutation

0° 0% 0% 3% 0° 6° O° O° A° O° O° AP O° o°

o°

Copyright 2004-2015 The MathWorks, Inc.

% Here we swap two elements of the permutation

mutationChildren = cell(length(parents),1);% Normally zeros(length(parents),bNVARS);

for i=1:1length(parents)
parent = thisPopulation{parents(i)}
p = ceil(length(parent) * rand(1,2)
child = parent;
child(p(1)) = parent(p(2));

);

% Normally thisPopulation(parents(i),:)
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child(p(2)) = parent(p(1));
mutationChildren{i} = child; % Normally mutationChildren(i, :)
end

We also need a fitness function for the traveling salesman problem. The fitness of an individual is the
total distance traveled for an ordered set of cities. The fitness function also needs the distance matrix
to calculate the total distance.

type traveling salesman fitness.m

function scores = traveling salesman_ fitness(x,distances)

%STRAVELING SALESMAN FITNESS Custom fitness function for TSP.

SCORES = TRAVELING SALESMAN FITNESS(X,DISTANCES) Calculate the fitness
of an individual. The fitness is the total distance traveled for an
ordered set of cities in X. DISTANCE(A,B) is the distance from the city
A to the city B.

o° o° o o°

o°

Copyright 2004-2007 The MathWorks, Inc.

scores = zeros(size(x,1),1);
for j = 1l:size(x,1)
here is where the special knowledge that the population is a cell
array 1is used. Normally, this would be pop(j,:);
=x{j};
= distances(p(end),p(l));
or i = 2:length(p)
f = f + distances(p(i-1),p(1));

o° o°

)
|

end

ga will call our fitness function with just one argument X, but our fitness function has two arguments:
X, distances. We can use an anonymous function to capture the values of the additional argument,
the distances matrix. We create a function handle FitnessFcn to an anonymous function that takes
one input x, but calls traveling salesman_fitness with x, and distances. The variable, distances
has a value when the function handle FitnessFcn is created, so these values are captured by the
anonymous function.

%sdistances defined earlier
FitnessFcn = @(x) traveling salesman fitness(x,distances);

We can add a custom plot function to plot the location of the cities and the current best route. A red
circle represents a city and the blue lines represent a valid path between two cities.

type traveling salesman plot.m

function state = traveling salesman plot(options,state,flag, locations)
TRAVELING SALESMAN PLOT Custom plot function for traveling salesman.
STATE = TRAVELING SALESMAN PLOT(OPTIONS,STATE,FLAG,LOCATIONS) Plot city
LOCATIONS and connecting route between them. This function is specific
to the traveling salesman problem.

0° o° o° o°

% Copyright 2004-2006 The MathWorks, Inc.
persistent x y xx yy
if strcmpi(flag, 'init')

load('usborder.mat', 'x","'y"', 'xx','yy');
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end
plot(x,y, 'Color','red");
axis([-0.1 1.5 -0.2 1.21);

hold on;
[unused,i] = min(state.Score);
genotype = state.Population{i};

plot(locations(:,1),locations(:,2),'bo");
plot(locations(genotype,1l),locations(genotype,2));
hold off

Once again we will use an anonymous function to create a function handle to an anonymous function
which calls traveling salesman plot with the additional argument locations.

%locations defined earlier
my plot = @(options,state,flag) traveling salesman plot(options,
state, flag, locations);

Genetic Algorithm Options Setup
First, we will create an options container to indicate a custom data type and the population range.

options = optimoptions(@ga, 'PopulationType', 'custom','InitialPopulationRange',
[1;cities]);

We choose the custom creation, crossover, mutation, and plot functions that we have created, as well
as setting some stopping conditions.

options = optimoptions(options, 'CreationFcn',@create permutations,
‘CrossoverFcn',@crossover_permutation,
'MutationFcn',@mutate permutation,
"PlotFcn', my plot,
'MaxGenerations',500, 'PopulationSize', 60,
'MaxStallGenerations',b 200, 'UseVectorized', true);

Finally, we call the genetic algorithm with our problem information.

numberOfVariables = cities;
[x,fval, reason,output] = ...
ga(FitnessFcn,numberOfvVariables, [],[]1,[]1,[1,[1,[1,[]1,0options)

Optimization terminated: maximum number of generations exceeded.

X =
1x1 cell array
{[14 12 36 3 5 11 40 25 38 37 7 30 28 10 23 21 27 4129 26 319 24 ... ]}
fval =
5.3846
reason =
0
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output =
struct with fields:

problemtype: 'unconstrained'
rngstate: [1x1 struct]
generations: 500
funccount: 28563
message: 'Optimization terminated: maximum number of generations exceeded.'
maxconstraint: []
hybridflag: []
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The plot shows the location of the cities in blue circles as well as the path found by the genetic
algorithm that the salesman will travel. The salesman can start at either end of the route and at the
end, return to the starting city to get back home.

See Also

More About

. “Traveling Salesman Problem: Solver-Based”
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When to Use a Hybrid Function

A hybrid function is a function that continues the optimization after the original solver terminates.

These Global Optimization Toolbox solvers can automatically run a hybrid function, or second solver,
after they finish:

* ga
* gamultiobj

* particleswarm
* simulannealbnd

To run a hybrid function, set the HybridFcn option to the second solver.

A hybrid function can obtain a more accurate solution, starting from the relatively rough solution
found by the first solver, in the following circumstances:

*  Whether or not the objective function has nonsmooth regions, if the solution is in a smooth region
with smooth constraints, then use a hybrid function from Optimization Toolbox, such as fmincon.

+ If the objective function or a constraint is nonsmooth near the solution, then use patternsearch
as a hybrid function.

* Suppose that the problem has multiple local minima, and you want to obtain an accurate global
solution. The single-objective solvers can search for the vicinity of a global solution, but do not
necessarily obtain an extremely accurate result. If the objective function is smooth, then use a
hybrid function from Optimization Toolbox, such as fminunc.

* For smooth multiobjective problems, a hybrid function usually improves on solutions from
gamultiobj.

To see which solvers are available as hybrid functions, refer to the options input argument on the
reference page for the original solver. To tune the hybrid function, you can include a separate set of
options for the hybrid function. For example, if the hybrid function is fmincon:

hybridopts = optimoptions('fmincon', 'OptimalityTolerance',le-10);
options = optimoptions('ga', 'HybridFcn',{'fmincon',hybridopts});
[x,fval] = ga(fun,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)

See Also
ga | gamultiobj | particleswarm | simulannealbnd

More About
. “Hybrid Scheme in the Genetic Algorithm” on page 7-90
. “Tune Particle Swarm Optimization Process” on page 9-14

. “Design Optimization of a Welded Beam” on page 13-62
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* “Minimize Rastrigins' Function Using ga, Problem-Based” on page 8-2

* “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm, Problem-Based”
on page 8-5

* “Set Options in Problem-Based Approach Using varindex” on page 8-17
* “Constrained Minimization Using ga, Problem-Based” on page 8-19
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Minimize Rastrigins' Function Using ga, Problem-Based

This example shows how to minimize a function with multiple minima using the genetic algorithm in
the problem-based approach. For two variables x and y, Rastrigin's function is defined as follows.

ras = @(x, y) 20 + x.”2 + y.”2 - 10*(cos(2*pi*x) + cos(2*pi*y));
Plot the function scaled by 10 in each direction.

rf3 = @(x, y) ras(x/10, y/10);
fsurf(rf3,[-30 301, "ShowContours", "on")
title("rastriginsfcn([x/10,y/10])")
xlabel("x")

ylabel("y")

rastriginsfen([x/10,y/10])

50 -

40 -

30

20+

10

The function has many local minima and a global minimum value of 0 that is attained at x =0, y = 0.
See “What Is Global Optimization?” on page 1-25

Create optimization variables x and y. Specify that the variables are bounded by +100.

X
y

optimvar("x","LowerBound",-100, "UpperBound",100);
optimvar("y","LowerBound",-100, "UpperBound",100);

Create an optimization problem with the objective function rastriginsfcn(x).

prob = optimproblem("Objective",ras(x,y));
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Note: If you have a nonlinear function that is not composed of polynomials, rational expressions, and
elementary functions such as exp, then convert the function to an optimization expression by using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” and “Supported
Operations for Optimization Variables and Expressions”.

Create ga options to use the gaplotbestf plot function.
options = optimoptions("ga","PlotFcn", "gaplotbestf");
Solve the problem using ga as the solver.

rng default % For reproducibility

[sol,fval] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Best: 1.98992 Mean: 1.98992

7000

* Best fitness
. Mean fitness

6000

5000

4000 1

3000

d

Fitness value

2000

-

1000

0 - — A i L I I I I I i
1] 20 40 60 80 100 120 140 160 180 200

Generation

struct with fields:
0.9950
0.9950

sol

< X 1

fval = 1.9899

Is the resulting function value the lowest minimum? Perform the search again. Because ga is a
stochastic algorithm, the results can differ.

[sol2,fval2] = solve(prob,"Solver","ga","Options",options)
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Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance

Best: 0.994959 Mean: 0.99496

7000

* Best fitness
. Mean fitness

6000 -

o000

Fitness value
[
i)
i)
=
T

2000

1000 |

D i I i L 1 1 i i i i
0 20 40 60 80 100 120 140 160 180 200

Generation

sol2 = struct with fields:
X: 0.9950
y: -4.9289%e-06

fval2 = 0.9950

The second solution is better because it has a lower function value. A solution returned by ga is not
guaranteed to be a global solution.

See Also
ga | fcn2optimexpr | solve

Related Examples
. “Genetic Algorithm”
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Solve a Mixed-Integer Engineering Design Problem Using the
Genetic Algorithm, Problem-Based

This example shows how to solve a mixed-integer engineering design problem using the genetic
algorithm (ga) solver in Global Optimization Toolbox. The example uses the problem-based approach.
For a version using the solver-based approach, see “Solve a Mixed-Integer Engineering Design
Problem Using the Genetic Algorithm” on page 7-44.

The problem illustrated in this example involves the design of a stepped cantilever beam. In
particular, the beam must be able to carry a prescribed end load. The optimization problem is to
minimize the beam volume subject to various engineering design constraints.

This problem is described in Thanedar and Vanderplaats [1] on page 8-0

Stepped Cantilever Beam Design Problem

A stepped cantilever beam is supported at one end, and a load is applied at the free end, as shown in
the following figure. The beam must be able to support the given load P at a fixed distance L from the
support. Designers of the beam can vary the width (b;) and height (h;) of each step, or section. Each

section of the cantilever has the same length, I = L;.

Volume of the Beam
The volume of the beam V is the sum of the volume of the individual sections.

V = I(byhy + byhy + bzh3 + bghy + bshs).
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Constraints on the Design: Bending Stress

Consider a single cantilever beam, with the center of coordinates at the center of its cross section at
the free end of the beam. The bending stress at a point (x, y, z) in the beam is given by the equation

op = M()y/I,

where M(x) is the bending moment at x, x is the distance from the end load, and I is the area moment
of inertia of the beam.

In the stepped cantilever beam shown in the figure, the maximum moment of each section of the
beam is PD;, where D; is the maximum distance from the end load P for each section of the beam.

Therefore, the maximum stress for the ith section of the beam g; is given by
o; = PD;(hi/2)/1;,

where the maximum stress occurs at the edge of the beam, y = h;/2. The area moment of inertia of
the ith section of the beam is given by

I; = bihd/12.

Substituting this expression into the equation for o; gives

0; = 6PD;/b;h?.

The bending stress in each part of the cantilever must not exceed the maximum allowable stress
Omax- Therefore, the five bending stress constraints (one for each step of the cantilever) are:

6PI

— = Omax
bsh?

6P(21)

bshi

= Omax

6P(3])
b3h?

= Omax

6P(41)
boh3

= Omax

6P(51)
bih?

= Omax

Constraints on the Design: End Deflection

You can calculate the end deflection of the cantilever using Castigliano's second theorem, which
states that

_ U

6=%p
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where 6 is the deflection of the beam, and U is the energy stored in the beam due to the applied force
P.

The energy stored in a cantilever beam is given by
L 2
U= ["M2Erdx

where M is the moment of the applied force at x.

Given that M = Px for a cantilever beam, you can write the preceding equation as
1
U =P%2E l [+ AD2T + (c+ 3D%IT, + (x + 2D%/15 + (x + D214 + x2/I5) dx,

where I, is the area moment of inertia of the nth part of the cantilever. Evaluating the integral gives
this expression for U

U = (P?12)(13/3E)(61/1; + 37/1y + 19/I3 + 7/I4 + 1/I5).
Applying Castigliano's theorem, the end deflection of the beam is given by
0= Pl3/3E(61/11 + 37/ + 19/I3 4+ 7/14 + 1/I5).

The end deflection of the cantilever 6§ must be less than the maximum allowable deflection 6,4y,
which gives the constraint

P13/3E(61/Il + 37/ + 19/I3+ 7/I4 + 1/I5) < bmax-
Constraints on the Design: Aspect Ratio

For each step of the cantilever, the aspect ratio must not exceed a maximum allowable aspect ratio
Qmax- That is,

hi/b; < @pgy fori=1,...,5.
Constraints on the Design: Bounds and Integer Constraints

The first step of the beam can be machined to the nearest centimeter only. That is, by and h; must be
integers. The remaining variables are continuous. The bounds on the variables are:

1=b; =5

30 =h; =65
2.4=<by,b3=3.1
45 < hy, hz = 60
1<bybs=<5

30 < hy, hs = 65
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Design Parameters for This Problem
For the problem in this example, the end load that the beam must support is P = 50000N.
The beam lengths and maximum end deflection are:

» Total beam length, L = 500cm
* Length of an individual section of the beam, | = L1 = 100cm

*  Maximum beam end deflection, 6,4 = 2. 7cm
The maximum allowed stress in each step of the beam is 0,4, = 14000N/cm?.

Young's modulus of each step of the beam is E = 2 x 10’N/cm?.
Problem-Based Setup

Create optimization variables for this problem. The width and height variables for the first section of
the beam are of type integer, so you must create them separately from the other four variables, which
are continuous.

bl = optimvar("bl","Type","integer","LowerBound",1,"UpperBound",5);

hl = optimvar("hl","Type","integer","LowerBound", 30, "UpperBound",65);

bc = optimvar("bc",4,"LowerBound",[2.4 2.4 1 1],"UpperBound",[3.1 3.1 5 5]);
hc = optimvar("hc",4, "LowerBound",[45 45 30 30],"UpperBound",[60 60 65 65]);

For convenience, put the height and width variables into single variables. You can then express the
objective and constraints easily in terms of these variables.

[h1;hc];
[bl;bc];

Create an optimization problem with the volume of the beam as the objective function, where each
step (or section) of the beam is L; = 100 cm long: volume = nghiwi.

L 1 = 100; % Length of each step of the cantilever
prob = optimproblem("Objective",L 1*dot(h,b));

Create the constraints on the stress.

P = 50000; % End load

E =2e7; % Young s modulus in N/cm”2

deltaMax = 2.7; Max1mum end deflection

sigmaMax = 14000; % Maximum stress in each section of the beam
aMax = 20; % Max1mum aspect ratio in each section of the beam

stress = 6*P*L_1./(b.*(h."2));

stepnum = (5:-1:1)"';

stress = stress.*stepnum;
prob.Constraints.stress = stress <= sigmaMax;

Create the constraint on the deflection.
deflectionMultiplier = (P*L 173/E)*[244 148 76 28 4];

bh3 = 1./(b.*(h."3));
prob.Constraints.deflection = deflectionMultiplier*bh3 <= deltaMax;
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Create the constraints on the aspect ratio.
prob.Constraints.aspect = h <= aMax*b;
Review the problem setup.
show(prob)

OptimizationProblem :

Solve for:

bl, bc, hl, hc
where:

bl, hl integer

minimize :
100*h1*b1 + 100*hc(1)*bc(1l) + 100*hc(2)*bc(2) + 100*hc(3)*bc(3)
+ 100*hc(4)*bc(4)

subject to stress:
arg LHS <= arg RHS

where:

argl = zeros([5, 1]);
argl(l) = hl;
argl(2:5) = hc;

arg2 = zeros([5, 1]);

arg2(l) = bl;
arg2(2:5) = bc;
arg LHS = ((30000000 ./ (arg2(:) .* argl(:).”2)) .* extraParams{l});

arg2 = 14000;
argl = arg2(ones(1,5));
arg RHS = argl(:);

extraParams{1}:

RNWROG

subject to deflection:
arg LHS <= 2.7

where:

argl = zeros([5, 1]);
argl(l) = hl;
argl(2:5) = hc;

arg2 = zeros([5, 1]);

arg2(l) = bl;
arg2(2:5) = bc;
arg LHS = (extraParams{1} * (1 ./ (arg2(:) .* argl(:).”3)));

8-9
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extraParams{1}:

610000 370000 190000 70000 10000

subject to aspect:
-20*%b1l + hl <= 0

-20*bc(1) + hc(l) <= 0
-20*bc(2) + hc(2) <= 0
-20*bc(3) + hc(3) <= 0
-20*bc(4) + hc(4) <= 0
variable bounds:

1l <=Dbl <=5
2.4 <= bc(l) <= 3.1
2.4 <= bc(2) <= 3.1

1 <= bc(3) <=5

1 <= bc(4) <=5

30 <= hl <= 65

45 <= hc(1l) <= 60
45 <= hc(2) <= 60
30 <= hc(3) <= 65
30 <= hc(4) <= 65

Solve the Problem

Set options to use a moderate population size of 150, a moderate maximum number of generations of
400, a slightly larger than default elite count of 10, a small function tolerance of 1e-8, and a plot
function showing the function value during the iterations.

opts = optimoptions(@ga,
'PopulationSize', 150,
'MaxGenerations', 400,
"EliteCount', 10,
'FunctionTolerance', le-8,
'PlotFcn', @gaplotbestf);

Solve the problem, specifying the ga solver and the options.

rng default % For reproducibility
[sol,fval,exitflag] = solve(prob,"Solver","ga","Options",opts)

Solving problem using ga.
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%103 Best: 63557.6 Mean: 125858
14r
| * Best penalty value
1 . Mean penalty value
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Optimization terminated:

sol = struct with fields:

bl: 3.0000
bc: [4x1 double]
hl: 60.0000

hc: [4x1 double]

fval = 6.3558e+04

exitflag =
SolverLimitExceeded

View the solution variables and their bounds.

widths = [sol.bl;sol.bc];

heights = [sol.hl;sol.hc];

widthbounds = [bl.LowerBound bl.UpperBound;
bc.LowerBound bc.UpperBound];

heightbounds = [hl.LowerBound hl.UpperBound;
hc.LowerBound hc.UpperBound];

T = table(widths,heights,widthbounds,heightbounds, ...

'VariableNames'
T=5x4 table
Width Height Width Bounds Height Bounds

maximum number of generations exceeded.

, ["Width" "Height" "Width Bounds" "Height Bounds"])
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3 60 1 5 30 65
2.8369 56.632 2.4 3.1 45 60
2.6483 50.739 2.4 3.1 45 60
2.2205 44.293 1 5 30 65
1.7652 35.231 1 5 30 65

The solution is not at any of the bounds. The first solution variables are integer valued, as specified.

Add Discrete Noninteger Variable Constraints

Suppose the engineers learn that the second and third steps of the cantilever can have widths and
heights selected from a standard set only. With the addition of this constraint, the problem is identical
to the one solved in [1].

First, delineate the extra constraints to add to the optimization:

* The width of the second and third steps of the beam must be selected from the set [2.4, 2.6, 2.8,
3.1] cm.

* The height of the second and third steps of the beam must be selected from the set [45, 50, 55,
60] cm.

To solve this problem, you need to specify the variables wc(1), we(2), he(1), and he(2) as discrete
variables. Ideally, you would use S(x;) as the discrete value, where S represents the allowable set of
values and x; represents a problem variable. However, you cannot use an optimization variable as an
index. You can get around this problem by calling fcn2optimexpr.

widthlist = [2.4,2.6,2.8,3.1];
heightlist = [45 50 55 60];
b23 = optimvar("w23",2,"Type","integer",

"LowerBound", 1, "UpperBound", length(w1dthllst))
h23 = opt1mvar("h23" 2,"Type","integer",

"LowerBound", 1, UpperBound” length(helghtllst)),
b45 = optimvar("b45" 2,"LowerBound", 1, "UpperBound",5);
h45 = optimvar("h45",2, LowerBound",30,"UpperBound",65);
% Preferred syntax is we = [widthlist(b23(1));widthlist(b23(2))];
% However, this syntax is illegal.
% Instead call fcn2optimexpr.
fcn2optimexpr(@(x) [widthlist(x(1));widthlist(x(2))],
fcn2optimexpr(@(x) [heightlist(x(1));heightlist(x(2))

b23);
1,h23);

As you did earlier, create the expressions b and h to represent the variables.

b
h

[bl;we;b45];
[h1l;he;h45];

The remainder of the problem formulation is the same as earlier.
prob2 = optimproblem("Objective",L 1*dot(h,b));
Create the constraints on the stress.

stress = 6*P*L_1./(b.*(h."2));
stepnum = (5:-1:1)"';
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stress = stress.*stepnum;
prob2.Constraints.stress = stress <= sigmaMax;

Create the constraint on the deflection.

deflectionMultiplier = (P*L 173/E)*[244 148 76 28 4];

bh3 = 1./(b.*(h."3));

prob2.Constraints.deflection = deflectionMultiplier*bh3 <= deltaMax;
Create the constraints on the aspect ratio.

prob2.Constraints.aspect = h <= aMax*b;

Review the problem setup.

show(prob2)

OptimizationProblem :

Solve for:

bl, b45, hl, h23, h45, w23
where:

bl, hl, h23, w23 integer

minimize :
(100 .* (argl(:).' * arg2(:)))

where:

anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];

argl = zeros([5, 1]);

argl(2:3) = anonymousFunction2(h23);

argl(l) = hl;

argl(4:5) = h45;

anonymousFunctionl = @(x) [widthlist(x(1));widthlist(x(2))];
arg2 = zeros([5, 11);

arg2(2:3) = anonymousFunctionl(w23);

arg2(1l) = bl
arg2(4:5)

ol

b45;

subject to stress:
arg LHS <= arg RHS

where:

anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];

argl = zeros([5, 1]);

argl(2:3) = anonymousFunction2(h23);
argl(l) = hl;
argl(4:5) = h45;

anonymousFunctionl = @(x) [widthlist(x(1));widthlist(x(2))];
arg2 = zeros([5, 11);

arg2(2:3) = anonymousFunctionl(w23);
arg2(l) = bl;

arg2(4:5) = b45;

arg LHS = ((30000000 ./ (arg2(:) .* argl(:).”2)) .* extraParams{l});

14000;
arg2(ones(1,5));

arg2
argl
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1 <= b45(1) <=
1 <= b45(2) <=

arg RHS = argl(:);

extraParams{1}:

RNWROG

subject to deflection:
arg LHS <= 2.7

where:

anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
argl = zeros([5, 1]);

argl(2:3) = anonymousFunctionZ(hZB);

argl(l) =

argl(4: 5) h45

anonymousFunctionl = @(x) [widthlist(x(1));widthlist(x(2))];
arg2 = zeros([5, 1]);

arg2(2:3) = anonymousFunct10n1(w23)

arg2(l) = bl
arg2(4:5) =
arg LHS = (extraParams{l} ¥ (1 ./ (arg2(:) .* argl(:)."3)));
extraParams{1}:
610000 370000 190000 70000 10000

subject to aspect:
arg LHS <= arg RHS

where:

argl = zeros([5, 1]);

argl(l) = hl;

anonymousFunction2 = @(x)[heightlist(x(1));heightlist(x(2))];
argl(2:3) = anonymousFunction2(h23);

argl(4:5) = h45;

arg LHS = argl(:);

anonymousFunctionl = @(x) [widthlist(x(1));widthlist(x(2))];
argl = zeros([5, 1]);

argl(l) = bl;
argl(4:5) = b45;
arg RHS = (20 .* argl(:));

variable bounds:
1l <=Dbl <=5

(6,0, ]
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30 <= hl <= 65

1 <= h23(1) <= 4
1 <= h23(2) <= 4

30 <= h45(1)
30 <= h45(2)

[e) )]
(6,100,

<
<

1 <= w23(1) <= 4
1 <= w23(2) <=4

Solve the Problem with Discrete Variable Constraints
Solve the problem, specifying the ga solver and the options.

rng default % For reproducibility

[sol2,fval2,exitflag2] = solve(prob2,"Solver","ga","Options",opts)

Solving problem using ga.

« 104 Best: 64803.2 Mean: 69025.3
121
’ . Best penatty value
: * Mean penalty value
%
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* .
o v _
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Generation

Optimization terminated: maximum number of generations exceeded.

sol2 = struct with fields:

bl: 3
b45: [2x1 double]
hl: 60

h23: [2x1 double]
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h45: [2x1 doublel]
w23: [2x1 double]

fval2 = 6.4803e+04

exitflag2 =
SolverLimitExceeded

The objective value increases, because adding constraints can only increase the objective.

View the solution and compare it to its bounds.

widths = [sol2.bl;widthlist(sol2.w23(1));widthlist(sol2.w23(2));so0l2.b45];
heights = [sol2.hl;heightlist(sol12.h23(1));heightlist(sol2.h23(2));sol2.h45];
widthbounds = [bl.LowerBound bl.UpperBound;
widthlist(1l) widthlist(end);
widthlist(1l) widthlist(end);
b45.LowerBound b45.UpperBound];
heightbounds = [hl.LowerBound hl.UpperBound;
heightlist(1l) heightlist(end);
heightlist(1l) heightlist(end);
h45.LowerBound h45.UpperBound];
T = table(widths,heights,widthbounds,heightbounds, ...
'VariableNames', ["Width" "Height" "Width Bounds" "Height Bounds"])

T=5x4 table
Width Height Width Bounds Height Bounds
3 60 1 5 30 65
3.1 55 2.4 3.1 45 60
2.6 50 2.4 3.1 45 60
2.286 45.72 1 5 30 65
1.8532 34.004 1 5 30 65

The only solution variable that is at a bound is the width of the second section, which is 3.1, its
maximum.

References

[1] Thanedar, P. B., and G. N. Vanderplaats. "Survey of Discrete Variable Optimization for Structural
Design." Journal of Structural Engineering 121 (3), 1995, pp. 301-306.

See Also
ga | fcn2optimexpr | solve

Related Examples
. “Solve a Mixed-Integer Engineering Design Problem Using the Genetic Algorithm” on page 7-44
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Set Options in Problem-Based Approach Using varindex

To set certain options when using the problem-based approach, you must convert problem variables
to indices by calling varindex. For example, the ga solver accepts an option named
InitialPopulationRange that is a two-row matrix. The first row represents the lower limit and
the second row represents the upper limit of the problem variables. The columns of the matrix
represent individuals in the population, which are the problem variables. To match the column indices
to the problem variables, use varindex.

For example, set the objective function to the helper function mrosenbrock, given at the end of this
example on page 8-0 . This objective function is close to 0 near the point x; = y; = 1 for all i. Create

3-D problem variables x and y in row form, which is the form ga expects.

X
y

optimvar("x",1,3);
optimvar("y",1,3);

Create an optimization problem with the objective function mrosenbrock(x,y).
prob = optimproblem("Objective",mrosenbrock(x,y));

Set the initial range of the x variables to [-1 2], and the range of the y variables to [@ 3]. To do so,
find the indices for the variables.

xidx = varindex(prob, "x")
xidx = Ix3

1 2 3
yidx = varindex(prob,"y")
yidx = Ix3

4 5 6

Set the initial range as a two-row matrix with the first row containing the lower bounds, and the
second row containing the upper bounds.

poprange = zeros(2,max([xidx,yidx]));
poprange(1,xidx)

poprange(2,xidx) = 2;
poprange(1l,yidx) = 0;
poprange(2,yidx) = 3;
disp(poprange)
-1 -1 -1 0 0 0
2 2 2 3 3 3

Set the random number generator, and solve the problem using the initial range matrix.
rng default % For reproducibility

opts = optimoptions(“ga","InitialPopulationRange",poprange);

[sol,fval] = solve(prob,"Solver","ga","Options",opts)

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
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struct with fields:
[1.2583 0.7522 1.2317]
[1.5830 0.5653 1.5167]

sol

< X 1

fval = 0.1818

The returned solution has a fairly small objective function value.
Helper Function

This code creates the mrosenbrock helper function.

function F = mrosenbrock(x,y)

F = [10*(y - x.72),1 - x];

F = sum(F."2,2);
end

See Also
varindex

Related Examples
. “Genetic Algorithm”
. “Problem-Based Optimization Setup”
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Constrained Minimization Using ga, Problem-Based

This example shows how to minimize an objective function, subject to nonlinear inequality constraints
and bounds, using ga in the problem-based approach. For a solver-based version of this problem, see
“Constrained Minimization Using the Genetic Algorithm” on page 7-24.

Constrained Minimization Problem
For this problem, the fitness function to minimize is a simple function of 2-D variables X and Y.
camxy = @(X,Y)(4 - 2.1.*%X.72 + X."4./3) <X "2 + X XY + (-4 + 4.*Y."2).*¥Y."2;
This function is described in Dixon and Szego [1] on page 8-0
Additionally, the problem has nonlinear constraints and bounds.
x¥y + x -y +1.5<=0
10 - x*y <= 0

0 <=x<=1
0 <=y<=13

nonlinear constraint)
nonlinear constraint)
bound)
bound)

—_—~ e~~~

Plot the nonlinear constraint region on a surface plot of the fitness function. The constraints limit the
solution to the small region above both red curves.

x1 = linspace(0,1);
yl = (-x1 - 1.5)./(x1 - 1);
y2 = 10./x1;

[X,Y] = meshgrid(x1,linspace(0,13));
Z = camxy(X,Y);
surf(X,Y,Z,"LineStyle", "none")
hold on

z1 = camxy(x1l,yl);

z2 = camxy(x1l,y2);
plot3(x1,yl,z1,'r-"',x1,y2,22,'r-")
xlim([0 11)

ylim([0 13])
zlim([0,max(Z,[1,"all")])

hold off
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x 104

Create Optimization Variables, Problem, and Constraints

To set up this problem, create optimization variables x and y. Set the bounds when you create the
variables.

X
y

optimvar("x","LowerBound", 0, "UpperBound",1);
optimvar("y","LowerBound",Q, "UpperBound",13);

Create the objective as an optimization expression.

cam = camxy(x,y);

Create an optimization problem with this objective function.

prob = optimproblem("Objective", cam);

Create the two nonlinear inequality constraints, and include them in the problem.

prob.Constraints.cons

1 *y + x -y + 1.5 <=0;
prob.Constraints.cons2

= X
= 10 - x*y <= 0;
Review the problem.
show(prob)
OptimizationProblem :

Solve for:



Constrained Minimization Using ga, Problem-Based

X,y
minimize :

(((((4 - (2.1 .* x.72)) + (x.™4 ./ 3)) .* x.72) + (x .*y)) + (((-4)
+ (4 % y."2)) .* y."2))

subject to consl:
((((x .*y) +x)-y)+15) <=0

subject to cons2:
(10 - (x .*y)) <=0

variable bounds:
0 <=x<=1

0 <=y <=13
Solve Problem

Solve the problem, specifying the ga solver.
[sol,fval] = solve(prob,"Solver","ga")

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

= struct with fields:
x: 0.8122
y: 12.3103

sol

fval = 9.1268e+04

Add Visualization

To observe the solver's progress, specify options that select two plot functions. The plot function
gaplotbestf plots the best objective function value at every iteration, and the plot function
gaplotmaxconstr plots the maximum constraint violation at every iteration. Set these two plot
functions in a cell array. Also, display information about the solver's progress in the Command
Window by setting the Display option to 'iter'.

options = optimoptions(@ga,...
'PlotFcn',{@gaplotbestf,@gaplotmaxconstr},...
'Display', 'iter');

Run the solver, including the options argument.

[sol,fval] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.

Single objective optimization:
2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn: @gacreationuniform
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CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible
Best Max Stall
Generation Func-count f(x) Constraint Generations
1 2520 91357.8 0 0
2 4982 91324.1 4.55e-05 0
3 7914 97166.6 0 0
4 16145 91268.4 0.0009997 0

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.

4
10710

Fitness value
(%)
T

Best: 91264.8 Mean: 91268.3

. Best fitness
. Mean fitness

101

Max constraint
o

&0 B0 100 120 140
Generation

Max constraint: 0.00099968

160 180 200

struct with fields:
0.8123
12.3103

sol

< X 1

fval = 9.1268e+04

&0 B0 100 120 140
Generation

160 180 200

Nonlinear constraints cause ga to solve many subproblems at each iteration. As shown in both the
plots and the iterative display, the solution process has few iterations. However, the Func-count
column in the iterative display shows many function evaluations per iteration.

Unsupported Functions

If your objective or nonlinear constraint functions are not supported (see “Supported Operations for
Optimization Variables and Expressions”), use fcn2optimexpr to convert them to a form suitable for
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the problem-based approach. For example, suppose that instead of the constraint xy = 10, you have
the constraint I(x) + I1(y) = 10, where I;(x) is the modified Bessel function besseli(1,x). (The

Bessel functions are not supported functions.) Create this constraint using fcn2optimexpr. First,
create an optimization expression for I1(x) + I (y).

bfun = fcn2optimexpr(@(t,u)besseli(1l,t) + besseli(1l,u),Xx,y);

Next, replace the constraint cons2 with the constraint bfun >= 10.
prob.Constraints.cons2 = bfun >= 10;

Solve the problem. The solution is different because the constraint region is different.
[sol2,fval2] = solve(prob,"Solver","ga","Options",options)

Solving problem using ga.

Single objective optimization:

2 Variable(s)
2 Nonlinear inequality constraint(s)

Options:
CreationFcn: @gacreationuniform
CrossoverFcn: @crossoverscattered
SelectionFcn: @selectionstochunif
MutationFcn: @mutationadaptfeasible
Best Max Stall
Generation Func-count f(x) Constraint Generations
1 2512 974.044 0 0
2 4974 960.998 0 0
3 7436 963.12 0 0
4 12001 960.83 0.0009335 0

Optimization terminated: average change in the fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.
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Best: 960.59 Mean: 960.841

20000 -
1 * Best fitness
@ 15000 F * Mean fitness
3
g
e 10000 F
(5]
it}
5
i S000
U :" 1 1 i 1 1 1 1 1 1 i

0 20 40 &0 B0 100 120 140 160 180 200
Generation

Max constraint: 0.000933461

Max constraint
o

U i i i i i i i i i ]
1] 20 40 60 a0 100 120 140 160 180 200

Generation

sol2 = struct with fields:
x: 0.4999
y: 3.9979

fval2 = 960.8300

References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also
ga | solve | fcn2optimexpr

Related Examples
. “Genetic Algorithm”

. “Constrained Minimization Using Pattern Search, Problem-Based” on page 6-4
. “Minimize Rastrigin's Function” on page 7-3
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* “What Is Particle Swarm Optimization?” on page 9-2

* “Optimize Function Using particleswarm, Problem-Based” on page 9-3
* “Optimize Using Particle Swarm” on page 9-5

* “Particle Swarm Output Function” on page 9-8

* “Particle Swarm Optimization Algorithm” on page 9-11

* “Tune Particle Swarm Optimization Process” on page 9-14
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What Is Particle Swarm Optimization?

9-2

Particle swarm is a population-based algorithm. In this respect it is similar to the genetic algorithm. A
collection of individuals called particles move in steps throughout a region. At each step, the
algorithm evaluates the objective function at each particle. After this evaluation, the algorithm
decides on the new velocity of each particle. The particles move, then the algorithm reevaluates.

The inspiration for the algorithm is flocks of birds or insects swarming. Each particle is attracted to
some degree to the best location it has found so far, and also to the best location any member of the
swarm has found. After some steps, the population can coalesce around one location, or can coalesce
around a few locations, or can continue to move.

The particleswarm function attempts to optimize using a “Particle Swarm Optimization Algorithm”
on page 9-11.

See Also

Related Examples

. “Optimize Using Particle Swarm” on page 9-5
More About
. “Particle Swarm Optimization Algorithm” on page 9-11
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Optimize Function Using particleswarm, Problem-Based

This example shows how to minimize a function using particle swarm in the problem-based approach
when the objective is a function file, possibly of unknown content (a "black box" function). The
function to minimize, dejong5fcn(x), is included with Global Optimization Toolbox. Plot the
function.

dejong5fcn

Create a 2-D optimization variable x. The dejong5fcn function expects the variable to be a row
vector, so specify X as a 2-element row vector.

x = optimvar("x",1,2);

To use dejong5fcn as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@dejong5fcn,x);

Create an optimization problem with the objective function fun.

prob = optimproblem("Objective", fun);

Set variable bounds from -50 to 50 in all components. When you specify scalar bounds, the software

expands the bounds to all variables.
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x.LowerBound
x.UpperBound

-50;
50;

Solve the problem, specifying the particleswarm solver.

rng default % For reproducibility
[sol,fval] = solve(prob,"Solver","particleswarm")

Solving problem using particleswarm.
Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

sol = struct with fields:
x: [-31.9751 -31.9719]

fval = 0.9980

See Also
particleswarm | fcn2optimexpr | solve

Related Examples
. “Particle Swarm”
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Optimize Using Particle Swarm

This example shows how to optimize using the particleswarm solver.

The objective function in this example is De Jong’s fifth function, which is included with Global
Optimization Toolbox software.

dejong5fcn

This function has 25 local minima.

Try to find the minimum of the function using the default particleswarm settings.
fun = @dejong5fcn;

nvars = 2;

rng default % For reproducibility

[x,fval,exitflag] = particleswarm(fun,nvars)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllIterations iterations is less than OPTIONS.FunctionTolerance.

X = 1x2

-31.9521 -16.0176

fval = 5.9288
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9-6

exitflag =1

Is the solution x the global optimum? It is unclear at this point. Looking at the function plot shows
that the function has local minima for components in the range [-50,50]. So restricting the range of
the variables to [-50,50] helps the solver locate a global minimum.

b [-50;-50];
ub = -1b;
[x,fval,exitflag] = particleswarm(fun,nvars,1lb,ub)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

X = 1x2

-16.0079 -31.9697

fval = 1.9920
exitflag = 1

This looks promising: the new solution has lower fval than the previous one. But is x truly a global
solution? Try minimizing again with more particles, to better search the region.

options = optimoptions('particleswarm', 'SwarmSize',100);
[x,fval,exitflag] = particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllIterations iterations is less than OPTIONS.FunctionTolerance.

X = 1Ix2

-31.9781 -31.9784

fval = 0.9980
exitflag = 1

This looks even more promising. But is this answer a global solution, and how accurate is it? Rerun
the solver with a hybrid function. particleswarm calls the hybrid function after particleswarm
finishes its iterations.

options.HybridFcn
[x,fval,exitflag]

@fmincon;
particleswarm(fun,nvars,lb,ub,options)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

X = 1x2

-31.9783 -31.9784

fval = 0.9980

exitflag =1



Optimize Using Particle Swarm

particleswarm found essentially the same solution as before. This gives you some confidence that
particleswarm reports a local minimum and that the final x is the global solution.

See Also

More About

. “What Is Particle Swarm Optimization?” on page 9-2

. “Particle Swarm Optimization Algorithm” on page 9-11
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Particle Swarm Output Function

This example shows how to use an output function for particleswarm. The output function plots the
range that the particles occupy in each dimension.

An output function runs after each iteration of the solver. For syntax details, and for the data
available to an output function, see the particleswarm options reference pages.

Custom Plot Function

This output function draws a plot with one line per dimension. Each line represents the range of the
particles in the swarm in that dimension. The plot is log-scaled to accommodate wide ranges. If the

swarm converges to a single point, then the range of each dimension goes to zero. But if the swarm

does not converge to a single point, then the range stays away from zero in some dimensions.

Copy the following code into a file named pswplotranges.m on your MATLAB® path. The code sets
up nplot subplots, where nplot is the number of dimensions in the problem.

function stop = pswplotranges(optimValues,state)

stop = false; % This function does not stop the solver
switch state
case 'init’
nplot = size(optimValues.swarm,2); % Number of dimensions
for i = 1l:nplot % Set up axes for plot
subplot(nplot,1,1i);
tag = sprintf('psoplotrange var %g',i); % Set a tag for the subplot
semilogy(optimValues.iteration,0Q,'-k','Tag',tag); % Log-scaled plot
ylabel(num2str(i))
end
xlabel('Iteration', 'interp', 'none'); % Iteration number at the bottom
subplot(nplot,1,1) % Title at the top
title('Log range of particles by component')
setappdata(gcf, 't0',tic); % Set up a timer to plot only when needed
case 'iter'
nplot = size(optimValues.swarm,2); % Number of dimensions
for i = 1l:nplot
subplot(nplot,1,i);
% Calculate the range of the particles at dimension i
irange = max(optimValues.swarm(:,i)) - min(optimValues.swarm(:,1));
tag = sprintf('psoplotrange var %g',i);
plotHandle = findobj(get(gca, 'Children'),'Tag',tag); % Get the subplot
xdata = plotHandle.XData; % Get the X data from the plot
newX = [xdata optimValues.iteration]; % Add the new iteration
plotHandle.XData = newX; % Put the X data into the plot
ydata = plotHandle.YData; % Get the Y data from the plot
newY = [ydata irange]; % Add the new value
plotHandle.YData = newY; % Put the Y data into the plot
end
if toc(getappdata(gcf, 't0')) > 1/30 % If 1/30 s has passed
drawnow % Show the plot
setappdata(gcf, 't0',tic); % Reset the timer
end
case 'done'’
% No cleanup necessary
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end

Objective Function

The multirosenbrock function is a generalization of Rosenbrock's function to any even number of
dimensions. It has a global minimum of 0 at the point [1,1,1,1,...1].

function F = multirosenbrock(x)

This function is a multidimensional generalization of Rosenbrock's
function. It operates in a vectorized manner, assuming that x is a matrix
whose rows are the individuals.

o° o o°

o°

Copyright 2014 by The MathWorks, Inc.

% assumes x is a row vector or 2-D matrix
f N is odd
t rows must have an even number of elements')

N = size(x,2);
if mod(N,2) % i

error('Inpu
end

odds = 1:2:N-1;

evens = 2:2:N;

F = zeros(size(x));

F(:,0dds) = 1-x(:,odds);

F(:,evens) = 10*(x(:,evens)-x(:,o0dds)."2);
F = sum(F."2,2);

Set Up and Run Problem

Set the multirosenbrock function as the objective function. User four variables. Set a lower bound
of -10 and an upper bound of 10 on each variable.

fun = @multirosenbrock;

nvar = 4; % A 4-D problem

1b -10*ones(nvar,1); % Bounds to help the solver converge

ub = -1b;

Set options to use the output function.

options = optimoptions(@particleswarm, 'OutputFcn',@pswplotranges);

Set the random number generator to get reproducible output. Then call the solver.

rng default % For reproducibility
[x,fval,eflag] = particleswarm(fun,nvar,lb,ub,options)

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

X =

0.9964 0.9930 0.9835 0.9681

fval =

3.4935e-04
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eflag =

Log range of particles by component

T T
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300
300
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[teration
Results

The solver returned a point near the optimum [1,1,1,1]. But the span of the swarm did not
converge to zero.

See Also

More About
. “Output Function and Plot Function” on page 15-47

9-10



Particle Swarm Optimization Algorithm

Particle Swarm Optimization Algorithm

In this section...

“Algorithm Outline” on page 9-11
“Initialization” on page 9-11
“Iteration Steps” on page 9-12

“Stopping Criteria” on page 9-13

Algorithm Outline

particleswarm is based on the algorithm described in Kennedy and Eberhart [1], using
modifications suggested in Mezura-Montes and Coello Coello [2] and in Pedersen [3].

The particle swarm algorithm begins by creating the initial particles, and assigning them initial
velocities.

It evaluates the objective function at each particle location, and determines the best (lowest) function
value and the best location.

It chooses new velocities, based on the current velocity, the particles’ individual best locations, and
the best locations of their neighbors.

It then iteratively updates the particle locations (the new location is the old one plus the velocity,
modified to keep particles within bounds), velocities, and neighbors.

Iterations proceed until the algorithm reaches a stopping criterion.

Here are the details of the steps.

Initialization

By default, particleswarm creates particles at random uniformly within bounds. If there is an
unbounded component, particleswarm creates particles with a random uniform distribution from -
1000 to 1000. If you have only one bound, particleswarm shifts the creation to have the bound as
an endpoint, and a creation interval 2000 wide. Particle i has position x (1), which is a row vector
with nvars elements. Control the span of the initial swarm using the InitialSwarmSpan option.

Similarly, particleswarm creates initial particle velocities v at random uniformly within the range
[-r,r], where ris the vector of initial ranges. The range of component k is min(ub (k) -
lb(k),InitialSwarmSpan(k)).

particleswarm evaluates the objective function at all particles. It records the current position p (i)
of each particle i. In subsequent iterations, p(i) will be the location of the best objective function
that particle i has found. And b is the best over all particles: b = min(fun(p(i))). disthe
location such that b = fun(d).

particleswarm initializes the neighborhood size N to minNeighborhoodSize =
max (2, floor(SwarmSize*MinNeighborsFraction)).

particleswarm initializes the inertia W = max(InertiaRange), or if InertiaRange is negative,
itsetsW = min(InertiaRange).
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particleswarm initializes the stall counter ¢ = 0.

For convenience of notation, set the variable yl = SelfAdjustmentWeight, and y2 =
SocialAdjustmentWeight, where SelfAdjustmentWeight and SocialAdjustmentWeight are
options.

Iteration Steps

The algorithm updates the swarm as follows. For particle i, which is at position x(1i):

10

Choose a random subset S of N particles other than i.

Find fbest(S), the best objective function among the neighbors, and g(S), the position of the
neighbor with the best objective function.

For ul and u2 uniformly (0,1) distributed random vectors of length nvars, update the velocity
v = Wkv + yl*ul.*(p-x) + y2*u2.*(g-x).
This update uses a weighted sum of:

* The previous velocity v

» The difference between the current position and the best position the particle has seen p-x

* The difference between the current position and the best position in the current neighborhood
g-X

Update the position x = x + v.

Enforce the bounds. If any component of x is outside a bound, set it equal to that bound. For
those components that were just set to a bound, if the velocity v of that component points outside
the bound, set that velocity component to zero.

Evaluate the objective function f = fun(x).
If f < fun(p), then set p = x. This step ensures p has the best position the particle has seen.

The next steps of the algorithm apply to parameters of the entire swarm, not the individual
particles. Consider the smallest f = min(f(j)) among the particles j in the swarm.

Iff < b,thensetb = fandd = x. This step ensures b has the best objective function in the
swarm, and d has the best location.

If, in the previous step, the best function value was lowered, then set flag = true. Otherwise,
flag = false. The value of flag is used in the next step.

Update the neighborhood. If flag = true:

a Setc = max(0,c-1).

b SetNtominNeighborhoodSize.
¢ Ifc < 2,thensetW = 2*W.

d Ifc > 5,thensetW = W/2.

e

Ensure that W is in the bounds of the InertiaRange option.

If flag = false:

c+1.
min(N + minNeighborhoodSize,SwarmSize).

a Setc
b SetN
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Stopping Criteria

particleswarm iterates until it reaches a stopping criterion.

Stopping Option Stopping Test Exit Flag
MaxStallIterations and Relative change in the best 1
FunctionTolerance objective function value g over

the last MaxStallIterations
iterations is less than

FunctionTolerance.
MaxIterations Number of iterations reaches 0
MaxIterations.
QutputFcn or PlotFcn OutputFcn or PlotFcn can -1

halt the iterations.

Objectivelimit Best objective function valueg |-3
is less than ObjectivelLimit.

MaxStallTime Best objective function valueg |-4
did not change in the last
MaxStallTime seconds.

MaxTime Function run time exceeds -5
MaxTime seconds.

If particleswarm stops with exit flag 1, it optionally calls a hybrid function after it exits.

References

[1] Kennedy, J., and R. Eberhart. "Particle Swarm Optimization." Proceedings of the IEEE
International Conference on Neural Networks. Perth, Australia, 1995, pp. 1942-1945.

[2] Mezura-Montes, E., and C. A. Coello Coello. "Constraint-handling in nature-inspired numerical
optimization: Past, present and future." Swarm and Evolutionary Computation. 2011, pp. 173-
194.

[3] Pedersen, M. E. "Good Parameters for Particle Swarm Optimization." Luxembourg: Hvass
Laboratories, 2010.

See Also

More About

. “What Is Particle Swarm Optimization?” on page 9-2
. “Optimize Using Particle Swarm” on page 9-5

9-13



9 Pparticle Swarm Optimization

Tune Particle Swarm Optimization Process

9-14

This example shows how to optimize using the particleswarm solver. The particle swarm algorithm
moves a population of particles called a swarm toward a minimum of an objective function. The
velocity of each particle in the swarm changes according to three factors:

» The effect of inertia (InertiaRange option)
* An attraction to the best location the particle has visited (SelfAdjustmentWeight option)

* An attraction to the best location among neighboring particles (SocialAdjustmentWeight
option)

This example shows some effects of changing particle swarm options.

When to Modify Options

Often, particleswarm finds a good solution when using its default options. For example, it
optimizes rastriginsfcn well with the default options. This function has many local minima, and a
global minimum of 0 at the point [0,0].

rng default % for reproducibility
[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

formatstring = 'particleswarm reached the value %f using %d function evaluations.\n';
fprintf(formatstring, fval,output.funccount)

particleswarm reached the value 0.000000 using 2560 function evaluations.

For this function, you know the optimal objective value, so you know that the solver found it. But what
if you do not know the solution? One way to evaluate the solution quality is to rerun the solver.

[x,fval,exitflag,output] = particleswarm(@rastriginsfcn,2);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fval,output.funccount)

particleswarm reached the value 0.000000 using 1480 function evaluations.

Both the solution and the number of function evaluations are similar to the previous run. This
suggests that the solver is not having difficulty arriving at a solution.

Difficult Objective Function Using Default Parameters

The Rosenbrock function is well known to be a difficult function to optimize. This example uses a
multidimensional version of the Rosenbrock function. The function has a minimum value of 0 at the
point [1,1,1,...].

rng default % for reproducibility

nvars = 6; % choose any even value for nvars

fun = @multirosenbrock;

[x,fval,exitflag,output] = particleswarm(fun,nvars);
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Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fval,output.funccount)

particleswarm reached the value 3106.436648 using 12960 function evaluations.
The solver did not find a very good solution.

Bound the Search Space

Try bounding the space to help the solver locate a good point.

lb = -10*ones(1,nvars);

ub -1b;
[xbounded, fvalbounded, exitflagbounded, outputbounded] = particleswarm(fun,nvars,lb,ub);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fvalbounded, outputbounded. funccount)

particleswarm reached the value 0.000006 using 71160 function evaluations.

The solver found a much better solution. But it took a very large number of function evaluations to do
so.

Change Options

Perhaps the solver would converge faster if it paid more attention to the best neighbor in the entire
space, rather than some smaller neighborhood.

options = optimoptions('particleswarm', '"MinNeighborsFraction',1);
[xn,fvaln,exitflagn,outputn] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fvaln,outputn.funccount)

particleswarm reached the value 0.000462 using 30180 function evaluations.

While the solver took fewer function evaluations, it is unclear if this was due to randomness or to a
better option setting.

Perhaps you should raise the SelfAdjustmentWeight option.

options.SelfAdjustmentWeight = 1.9;
[xn2, fvaln2,exitflagn2,outputn2] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fvaln2,outputn2.funccount)

particleswarm reached the value 0.000074 using 18780 function evaluations.

This time particleswarm took even fewer function evaluations. Is this improvement due to
randomness, or are the option settings really worthwhile? Rerun the solver and look at the number of
function evaluations.
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[xn3, fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fvaln3,outputn3.funccount)

particleswarm reached the value 0.157026 using 53040 function evaluations.

This time the number of function evaluations increased. Apparently, this SelfAdjustmentWeight
setting does not necessarily improve performance.

Provide an Initial Point

Perhaps particleswarm would do better if it started from a known point that is not too far from the
solution. Try the origin. Give a few individuals at the same initial point. Their random velocities
ensure that they do not remain together.

x0 = zeros(20,6); % set 20 individuals as row vectors
options.InitialSwarmMatrix = x0; % the rest of the swarm is random
[xn3, fvaln3,exitflagn3,outputn3] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

fprintf(formatstring, fvaln3,outputn3.funccount)

particleswarm reached the value 0.039015 using 32100 function evaluations.
The number of function evaluations decreased again.
Vectorize for Speed

The multirosenbrock function allows for vectorized function evaluation. This means that it can
simultaneously evaluate the objective function for all particles in the swarm. This usually speeds up
the solver considerably.

rng default % do a fair comparison

options.UseVectorized = true;

tic

[xv, fvalv,exitflagv,outputv] = particleswarm(fun,nvars,1lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

toc
Elapsed time is 0.427130 seconds.

options.UseVectorized = false;

rng default

tic

[xnv, fvalnv,exitflagnv,outputnv] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStalllIterations iterations is less than OPTIONS.FunctionTolerance.

toc

Elapsed time is 1.204132 seconds.
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The vectorized calculation took about half the time of the serial calculation.

Plot Function

You can view the progress of the solver using a plot function.

options = optimoptions(options, 'PlotFcn',@pswplotbestf);
rng default

[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.

Best Function Value: 0.0797555
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fprintf(formatstring, fval,output.funccount)

particleswarm reached the value 0.079755 using 24960 function evaluations.

Use More Particles

Frequently, using more particles obtains a more accurate solution.

rng default
options.SwarmSize = 200;

[x,fval,exitflag,output] = particleswarm(fun,nvars,1lb,ub,options);

Optimization ended: relative change in the objective value
over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance.
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Best Function Value: 0.000424241
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fprintf(formatstring, fval,output.funccount)

particleswarm reached the value 0.000424 using 169400 function evaluations.

Hybrid Function

particleswarm can search through several basins of attraction to arrive at a good local solution.
Sometimes, though, it does not arrive at a sufficiently accurate local minimum. Try improving the
final answer by specifying a hybrid function that runs after the particle swarm algorithm stops. Reset
the number of particles to their original value, 60, to see the difference the hybrid function makes.
rng default

options.HybridFcn = @fmincon;

options.SwarmSize = 60;

[x,fval,exitflag,output] = particleswarm(fun,nvars,lb,ub,options);

Optimization ended: relative change in the objective value

over the last OPTIONS.MaxStallIterations iterations is less than OPTIONS.FunctionTolerance



Tune Particle Swarm Optimization Process

Best Function Value: 0.0797555
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fprintf(formatstring, fval,output.funccount)
particleswarm reached the value 0.000000 using 25191 function evaluations.
disp(output.hybridflag)

1

While the hybrid function improved the result, the plot function shows the same final value as before.
This is because the plot function shows only the particle swarm algorithm iterations, and not the
hybrid function calculations. The hybrid function caused the final function value to be very close to

the true minimum value of 0. The output.hybridflag field shows that fmincon stops with exit flag
1, indicating that x is a true local minimum.

See Also

More About

. “Particle Swarm Options” on page 15-44
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What Is Surrogate Optimization?

10-2

A surrogate is a function that approximates another function. The surrogate is useful because it takes
little time to evaluate. So, for example, to search for a point that minimizes an objective function,
simply evaluate its surrogate on thousands of points, and take the best value as an approximation to
the minimizer of the objective function.

Surrogate optimization is best suited to time-consuming objective functions. The objective function
need not be smooth, but the algorithm works best when the objective function is continuous.

Surrogate optimization attempts to find a global minimum of an objective function using few objective
function evaluations. To do so, the algorithm tries to balance the optimization process between two
goals: exploration and speed.

» Exploration to search for a global minimum.
* Speed to obtain a good solution in few objective function evaluations.

The algorithm has been proven to converge to a global solution for continuous objective functions on
bounded domains. See Gutmann [1]. However, this convergence is not fast.

In general, there is no useful stopping criterion that stops the solver when it is near a global solution.
Typically, you set a stopping criterion of a number of function evaluations or an amount of time, and
take the best solution found within this computational budget.

For details of the surrogateopt algorithm, see “Surrogate Optimization Algorithm” on page 10-3.

References

[1] Gutmann, H.-M. A radial basis function method for global optimization. Journal of Global
Optimization 19, Issue 3, 2001, pp. 201-227. https://doi.org/10.1023/A:1011255519438

See Also
surrogateopt

More About
. “Surrogate Optimization Algorithm” on page 10-3
. “Compare Surrogate Optimization with Other Solvers” on page 10-31
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In this section...

“Serial surrogateopt Algorithm” on page 10-3

“Mixed-Integer surrogateopt Algorithm” on page 10-7

“Linear Constraint Handling” on page 10-9

“surrogateopt Algorithm with Nonlinear Constraints” on page 10-9
“Parallel surrogateopt Algorithm” on page 10-10

“Parallel Mixed-Integer surrogateopt Algorithm” on page 10-10

Serial surrogateopt Algorithm

* “Serial surrogateopt Algorithm Overview” on page 10-3
* “Definitions for Surrogate Optimization” on page 10-3

* “Construct Surrogate Details” on page 10-4

» “Search for Minimum Details” on page 10-5

* “Merit Function Definition” on page 10-7

Serial surrogateopt Algorithm Overview
The surrogate optimization algorithm alternates between two phases.

* Construct Surrogate — Create options.MinSurrogatePoints random points within the
bounds. Evaluate the (expensive) objective function at these points. Construct a surrogate of the
objective function by interpolating a radial basis function through these points.

* Search for Minimum — Search for a minimum of the objective function by sampling several
thousand random points within the bounds. Evaluate a merit function based on the surrogate
value at these points and on the distances between them and points where the (expensive)
objective function has been evaluated. Choose the best point as a candidate, as measured by the
merit function. Evaluate the objective function at the best candidate point. This point is called an
adaptive point. Update the surrogate using this value and search again.

During the Construct Surrogate phase, the algorithm constructs sample points from a quasirandom
sequence. Constructing an interpolating radial basis function takes at least nvars + 1 sample points,
where nvars is the number of problem variables. The default value of
options.MinSurrogatePoints is 2*nvars or 20, whichever is larger.

The algorithm stops the Search for Minimum phase when all the search points are too close (less than
the option MinSampleDistance) to points where the objective function was previously evaluated.
See “Search for Minimum Details” on page 10-5. This switch from the Search for Minimum phase

is called surrogate reset.

Definitions for Surrogate Optimization
The surrogate optimization algorithm description uses the following definitions.

* Current — The point where the objective function was evaluated most recently.

* Incumbent — The point with the smallest objective function value among all evaluated since the
most recent surrogate reset.
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* Best — The point with the smallest objective function value among all evaluated so far.
 Initial — The points, if any, that you pass to the solver in the InitialPoints option.

* Random points — Points in the Construct Surrogate phase where the solver evaluates the
objective function. Generally, the solver takes these points from a quasirandom sequence, scaled
and shifted to remain within the bounds. A quasirandom sequence is similar to a pseudorandom
sequence such as rand returns, but is more evenly spaced. See https://en.wikipedia.org/wiki/Low-
discrepancy sequence. However, when the number of variables is above 500, the solver takes
points from a Latin hypercube sequence. See https://en.wikipedia.org/wiki/

Latin hypercube sampling.

» Adaptive points — Points in the Search for Minimum phase where the solver evaluates the

objective function.

* Merit function — See “Merit Function Definition” on page 10-7.

» Evaluated points — All points at which the objective function value is known. These points include
initial points, Construct Surrogate points, and Search for Minimum points at which the solver
evaluates the objective function.

* Sample points. Pseudorandom points where the solver evaluates the merit function during the
Search for Minimum phase. These points are not points at which the solver evaluates the objective
function, except as described in “Search for Minimum Details” on page 10-5.

Construct Surrogate Details

To construct the surrogate, the algorithm chooses quasirandom points within the bounds. If you pass
an initial set of points in the InitialPoints option, the algorithm uses those points and new
quasirandom points (if necessary) to reach a total of options.MinSurrogatePoints.

When BatchUpdateInterval > 1, the minimum number of random sample points used to create a
surrogate is the larger of MinSurrogatePoints and BatchUpdateInterval.

Note If some upper bounds and lower bounds are equal, surrogateopt removes those "fixed"
variables from the problem before constructing a surrogate. surrogateopt manages the variables
seamlessly. So, for example, if you pass initial points, pass the full set, including any fixed variables.

On subsequent Construct Surrogate phases, the algorithm uses options.MinSurrogatePoints
quasirandom points. The algorithm evaluates the objective function at these points.

The algorithm constructs a surrogate as an interpolation of the objective function by using a radial
basis function (RBF) interpolator. RBF interpolation has several convenient properties that make it
suitable for constructing a surrogate:

* An RBF interpolator is defined using the same formula in any number of dimensions and with any
number of points.

* An RBF interpolator takes the prescribed values at the evaluated points.

* Evaluating an RBF interpolator takes little time.

* Adding a point to an existing interpolation takes relatively little time.

* Constructing an RBF interpolator involves solving an N-by-N linear system of equations, where N
is the number of surrogate points. As Powell [1] showed, this system has a unique solution for
many RBFs.

* surrogateopt uses a cubic RBF with a linear tail. This RBF minimizes a measure of bumpiness.
See Gutmann [4].
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Create Surrogate
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The algorithm uses only initial points and random points in the first Construct Surrogate phase, and
uses only random points in subsequent Construct Surrogate phases. In particular, the algorithm does
not use any adaptive points from the Search for Minimum phase in this surrogate.

Search for Minimum Details

The solver searches for a minimum of the objective function by following a procedure that is related
to local search. The solver initializes a scale for the search with the value 0.2. The scale is like a
search region radius or the mesh size in a pattern search. The solver starts from the incumbent point,
which is the point with the smallest objective function value since the last surrogate reset. The solver
searches for a minimum of a merit function that relates to both the surrogate and to a distance from
existing search points, to try to balance minimizing the surrogate and searching the space. See
“Merit Function Definition” on page 10-7.

The solver adds hundreds or thousands of pseudorandom vectors with scaled length to the incumbent
point to obtain sample points. These vectors have normal distributions, shifted and scaled by the
bounds in each dimension, and multiplied by the scale. If necessary, the solver alters the sample
points so that they stay within the bounds. The solver evaluates the merit function at the sample
points, but not at any point within options.MinSampleDistance of a previously evaluated point.
The point with the lowest merit function value is called the adaptive point. The solver evaluates the
objective function value at the adaptive point, and updates the surrogate with this value. If the
objective function value at the adaptive point is sufficiently lower than the incumbent value, then the
solver deems the search successful and sets the adaptive point as the incumbent. Otherwise, the
solver deems the search unsuccessful and does not change the incumbent.
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The solver changes the scale when the first of these conditions is met:

» Three successful searches occur since the last scale change. In this case, the scale is doubled, up
to a maximum scale length of 0. 8 times the size of the box specified by the bounds.

* max(5,nvar) unsuccessful searches occur since the last scale change, where nvar is the number
of problem variables. In this case, the scale is halved, down to a minimum scale length of 1e-5
times the size of the box specified by the bounds.

In this way, the random search eventually concentrates near an incumbent point that has a small
objective function value. Then the solver geometrically reduces the scale toward the minimum scale
length.

The solver does not evaluate the merit function at points within options.MinSampleDistance of
an evaluated point (see “Definitions for Surrogate Optimization” on page 10-3). The solver switches
from the Search for Minimum phase to a Construct Surrogate phase (in other words, performs a
surrogate reset) when all sample points are within MinSampleDistance of evaluated points.
Generally, this reset occurs after the solver reduces the scale so that all sample points are tightly
clustered around the incumbent.

When the BatchUpdateInterval option is larger than 1, the solver generates
BatchUpdateInterval adaptive points before updating the surrogate model or changing the
incumbent. The update includes all of the adaptive points. Effectively, the algorithm does not use any
new information until it generates BatchUpdateInterval adaptive points, and then the algorithm
uses all the information to update the surrogate.
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Merit Function Definition
The merit function f.:(x) is a weighted combination of two terms:

» Scaled surrogate. Define s,;, as the minimum surrogate value among the sample points, Sy.x as
the maximum, and s(x) as the surrogate value at the point x. Then the scaled surrogate S(x) is

S(X) = S
S(x) = M
Smax ~ Smin
s(x) is nonnegative and is zero at points x that have minimal surrogate value among sample points.

* Scaled distance. Define x;, j = 1,...,k as the k evaluated points. Define d; as the distance from
sample point i to evaluated point k. Set d;, = min(dy) and dy,., = max(d;), where the minimum
and maximum are taken over all i and j. The scaled distance D(x) is

D(x) = dmax — d(x)

dmax - dmin ’

where d(x) is the minimum distance of the point x to an evaluated point. D(x) is nonnegative and is
zero at points x that are maximally far from evaluated points. So, minimizing D(x) leads the
algorithm to points that are far from evaluated points.

The merit function is a convex combination of the scaled surrogate and scaled distance. For a weight
w with 0 < w < 1, the merit function is

fmeritX) = wS(x) + (1 — w)D(x) .

A large value of w gives importance to the surrogate values, causing the search to minimize the
surrogate. A small value of w gives importance to points that are far from evaluated points, leading
the search to new regions. During the Search for Minimum phase, the weight w cycles through these
four values, as suggested by Regis and Shoemaker [2]: 0.3, 0.5, 0.8, and 0.95.

Mixed-Integer surrogateopt Algorithm

* “Mixed-Integer surrogateopt Overview” on page 10-7
* “Algorithm Start” on page 10-7

* “Integer Search for Minimum” on page 10-8

* “Tree Search” on page 10-8

Mixed-Integer surrogateopt Overview

When some or all of the variables are integer, as specified in the intcon argument, surrogateopt
changes some aspects of the “Serial surrogateopt Algorithm” on page 10-3. This description is mainly
about the changes, rather than the entire algorithm.

Algorithm Start

If necessary, surrogateopt moves the specified bounds for intcon points so that they are integers.
Also, surrogateopt ensures that a supplied initial point is integer feasible and feasible with respect
to bounds. The algorithm then generates quasirandom points as in the non-integer algorithm,
rounding integer points to integer values. The algorithm generates a surrogate exactly as in the non-
integer algorithm.
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Integer Search for Minimum

The search for a minimum proceeds using the same merit function and sequence of weights as
before. The difference is that surrogateopt uses three different methods of sampling random points
to locate a minimum of the merit function. surrogateopt chooses the sampler in a cycle associated
with the weights according to the following table.

Sampler Cycle

Weight 0.3 0.5 0.8 0.95
Sampler Random Random OrthoMADS GPS

* Scale — Each sampler samples points within a scaled region around the incumbent. The integer
points have a scale that starts at ¥ times the width of the bounds, and adjusts exactly as the non-
integer points, except that the width is increased to 1 if it would ever fall below 1. The scale of the
continuous points develops exactly as in the non-integer algorithm.

* Random — The sampler generates integer points uniformly at random within a scale, centered at
the incumbent. The sampler generates continuous points according to a Gaussian with mean zero
from the incumbent. The width of the samples of the integer points is multiplied by the scale, as is
the standard deviation of the continuous points.

*  OrthoMADS — The sampler chooses an orthogonal coordinate system uniformly at random. The
algorithm then creates sample points around the incumbent, adding and subtracting the current
scale times each unit vector in the coordinate system. The algorithm rounds integer points. This
creates 2N samples (unless some integer points are rounded to the incumbent), where N is the
number of problem dimensions. OrthoMADS also uses two more points than the 2N fixed
directions, one at [+1,+1,...,+1], and the other at [-1,-1,...,-1], for a total of 2N+2 points. Then
the sampler repeatedly halves the 2N + 2 steps, creating a finer and finer set of points around the
incumbent, while rounding the integer points. This process ends when either there are enough
samples or rounding causes no new samples.

*  GPS — The sampler is like OrthoMADS, except instead of choosing a random set of directions,
GPS uses the non-rotated coordinate system.

Tree Search

After sampling hundreds or thousands of values of the merit function, surrogateopt usually
chooses the minimal point, and evaluates the objective function. However, under two circumstances,
surrogateopt performs another search called a Tree Search before evaluating the objective:

* There have been 2N steps since the last Tree Search, called Case A.
* surrogateopt is about to perform a surrogate reset, called Case B.

The Tree Search proceeds as follows, similar to a procedure in intlinprog, as described in “Branch
and Bound”. The algorithm makes a tree by finding an integer value and creating a new problem that
has a bound on this value either one higher or one lower, and solving the subproblem with this new
bound. After solving the subproblem, the algorithm chooses a different integer to be bounded either
above or below by one.

* Case A: Use the scaled sampling radius as the overall bounds, and run for up to 1000 steps of the
search.

» Case B: Use the original problem bounds as the overall bounds, and run for up to 5000 steps of
the search.
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In this case, solving the subproblem means running the fmincon 'sqp' algorithm on the continuous
variables, starting from the incumbent with the specified integer values, so search for a local
minimum of the merit function.

Tree Search can be time-consuming. So surrogateopt has an internal iteration limit to avoid
excessive time in this step, limiting both the number of Case A and Case B steps.

At the end of the Tree search, the algorithm takes the better of the point found by Tree Search and
the point found by the preceding search for a minimum, as measured by the merit function. The
algorithm evaluates the objective function at this point. The remainder of the integer algorithm is
exactly the same as the continuous algorithm.

Linear Constraint Handling

When a problem has linear constraints, the algorithm modifies its search procedure in a way that
keeps all points feasible with respect to these constraints and with respect to bounds at every
iteration. During the construction and search phases, the algorithm creates only linearly feasible
points by a procedure similar to the patternsearch 'GSSPositiveBasis2N' poll algorithm.

When a problem has integer constraints and linear constraints, the algorithm first creates linearly
feasible points. Then the algorithm tries to satisfy integer constraints by a process of rounding
linearly feasible points to integers using a heuristic that attempts to keeps the points linearly feasible.
When this process is unsuccessful in obtaining enough feasible points for constructing a surrogate,
the algorithm calls intlinprog to attempt to find more points that are feasible with respect to
bounds, linear constraints, and integer constraints.

surrogateopt Algorithm with Nonlinear Constraints

When the problem has nonlinear constraints, surrogateopt modifies the previously described
algorithm in several ways.

Initially and after each surrogate reset, the algorithm creates surrogates of the objective and
nonlinear constraint functions. Subsequently, the algorithm differs depending on whether or not the
Construct Surrogate phase found any feasible points; finding a feasible point is equivalent to the
incumbent point being feasible when the surrogate is constructed.

* Incumbent is infeasible — This case, called Phase 1, involves a search for a feasible point. In the
Search for Minimum phase before encountering a feasible point, surrogateopt changes the
definition of the merit function. The algorithm counts the number of constraints that are violated
at each point, and considers only those points with the fewest number of violated constraints.
Among those points, the algorithm chooses the point that minimizes the maximum constraint
violation as the best (lowest merit function) point. This best point is the incumbent. Subsequently,
until the algorithm encounters a feasible point, it uses this modification of the merit function.
When surrogateopt evaluates a point and finds that it is feasible, the feasible point becomes the
incumbent and the algorithm is in Phase 2.

* Incumbent is feasible — This case, called Phase 2, proceeds in the same way as the standard
algorithm. The algorithm ignores infeasible points for the purpose of computing the merit
function.

The algorithm proceeds according to the “Mixed-Integer surrogateopt Algorithm” on page 10-7 with
the following changes. After every 2*nvars points where the algorithm evaluates the objective and
nonlinear constraint functions, surrogateopt calls the fmincon function to minimize the surrogate,
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subject to the surrogate nonlinear constraints and bounds, where the bounds are scaled by the
current scale factor. (If the incumbent is infeasible, fmincon ignores the objective and attempts to
find a point satisfying the constraints.) If the problem has both integer and nonlinear constraints,
then surrogateopt calls “Tree Search” on page 10-8 instead of fmincon.

If the problem is a feasibility problem, meaning it has no objective function, then surrogateopt
performs a surrogate reset immediately after it finds a feasible point.

Parallel surrogateopt Algorithm

The parallel surrogateopt algorithm differs from the serial algorithm as follows:

* The parallel algorithm maintains a queue of points on which to evaluate the objective function.
This queue is 30% larger than the number of parallel workers, rounded up. The queue is larger
than the number of workers to minimize the chance that a worker is idle because no point is
available to evaluate.

* The scheduler takes points from the queue in a FIFO fashion and assigns them to workers as they
become idle, asynchronously.

*  When the algorithm switches between phases (Search for Minimum and Construct Surrogate), the
existing points being evaluated remain in service, and any other points in the queue are flushed
(discarded from the queue). So, generally, the number of random points that the algorithm creates
for the Construct Surrogate phase is at most options.MinSurrogatePoints + PoolSize,
where PoolSize is the number of parallel workers. Similarly, after a surrogate reset, the
algorithm still has PoolSize - 1 adaptive points that its workers are evaluating.

Note Currently, parallel surrogate optimization does not necessarily give reproducible results, due to
the nonreproducibility of parallel timing, which can lead to different execution paths.

Parallel Mixed-Integer surrogateopt Algorithm

When run in parallel on a mixed-integer problem, surrogateopt performs the Tree Search
procedure on the host, not on the parallel workers. Using the latest surrogate, surrogateopt
searches for a smaller value of the surrogate after each worker returns with an adaptive point.

If the objective function is not expensive (time-consuming), then this Tree Search procedure can be a
bottleneck on the host. In contrast, if the objective function is expensive, then the Tree Search
procedure takes a small fraction of the overall computational time, and is not a bottleneck.

References

[1] Powell, M. ]. D. The Theory of Radial Basis Function Approximation in 1990. In Light, W. A.
(editor), Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms, and
Radial Basis Functions. Clarendon Press, 1992, pp. 105-210.

[2] Regis, R. G., and C. A. Shoemaker. A Stochastic Radial Basis Function Method for the Global
Optimization of Expensive Functions. INFORMS ]. Computing 19, 2007, pp. 497-509.

[3] Wang, Y., and C. A. Shoemaker. A General Stochastic Algorithm Framework for Minimizing
Expensive Black Box Objective Functions Based on Surrogate Models and Sensitivity
Analysis. arXiv:1410.6271v1 (2014). Available at https://arxiv.org/pdf/1410.6271.


https://arxiv.org/pdf/1410.6271

Surrogate Optimization Algorithm

[4] Gutmann, H.-M. A Radial Basis Function Method for Global Optimization. Journal of Global
Optimization 19, March 2001, pp. 201-227.

See Also
surrogateopt

More About

. “Interpret surrogateoptplot” on page 10-25
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Surrogate Optimization of Multidimensional Function
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This example shows the behavior of three recommended solvers on a minimization problem. The
objective function is the multirosenbrock function:

type multirosenbrock

function F = multirosenbrock(x)

This function is a multidimensional generalization of Rosenbrock's
function. It operates in a vectorized manner, assuming that x is a matrix
whose rows are the individuals.

o® o o°

o°

Copyright 2014 by The MathWorks, Inc.

N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd

error('Input rows must have an even number of elements')
end

X));
x(:,odds);
*(x(:,evens)-x(:,odds).”2);

F(:,odds)
F(:,evens)
F = sum(F."2,

The multirosenbrock function has a single local minimum of 0 at the point [1,1,...,1]. See how
well the three best solvers for general nonlinear problems work on this function in 20 dimensions
with a challenging maximum function count of only 200.

Set up the problem.

N = 20; % any even number
mf = 200; % max fun evals
fun = @multirosenbrock;
1b -3*ones(1,N);

ub -1b;

rng default

X0 = -3*rand(1,N);

Set options for surrogateopt to use only 200 function evaluations, and then run the solver.

options = optimoptions('surrogateopt', 'MaxFunctionEvaluations',mf);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Set similar options for patternsearch, including a plot function to monitor the optimization.

psopts = optimoptions('patternsearch', 'PlotFcn', 'psplotbestf', 'MaxFunctionEvaluations',mf);
[psol,pfval] = patternsearch(fun,x0,[1,[1,[1,[1,lb,ub,[],psopts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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<104 Best Function Value: 860.28
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Set similar options for fmincon.

opts = optimoptions('fmincon', 'PlotFcn', 'optimplotfval', '"MaxFunctionEvaluations',mf);
[fmsol, fmfval,eflag, fmoutput] = fmincon(fun,x0,[1,[1,[1,[]1,lb,ub,[],0pts);
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«10% Current Function Value: 493.703
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Iteration

Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 2.000000e+02.

For this extremely restricted number of function evaluations, the surrogateopt solution is closest to
the true minimum value of 0.

table(fvalm,pfval, fmfval, 'VariableNames', {'surrogateopt', 'patternsearch','fmincon'})

ans=1x3 table
surrogateopt patternsearch fmincon

9.9646 860.28 493.7

Allowing another 200 function evaluations shows that the other solvers rapidly approach the true
solution, while surrogateopt does not improve significantly. Restart the solvers from their previous
solutions, which adds 200 function evaluations to each optimization.

options = optimoptions(options, 'InitialPoints',pop);
[xm,fvalm,~,~,pop] = surrogateopt(fun,lb,ub,options);
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Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

[psol,pfval] = patternsearch(fun,psol,[1,[1,[],[]1,lb,ub,[],psopts);

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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Best Function Value: 407.885
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[fmsol, fmfval,eflag, fmoutput] = fmincon(fun,fmsol,[1,[1,[1,[]1,lb,ub,[],0pts);
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Current Function Value: 8.59889
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Iteration

Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 2.000000e+02.

table(fvalm,pfval, fmfval, 'VariableNames', {'surrogateopt', 'patternsearch','fmincon'})

ans=1x3 table

surrogateopt patternsearch fmincon
9.7874 407.88 8.5989
See Also
surrogateopt
More About
. “Surrogate Optimization”
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Modify surrogateopt Options

This example shows how to search for a global minimum by running surrogateopt on a two-

dimensional problem that has six local minima. The example then shows how to modify some options
to search more effectively.

Define the objective function sixmin as follows.

sixmin = @(x) (4*x(:,1).72 - 2.1*x(:,1)."4 + x(:,1).76/3 ...
+ x(:,1).%x(:,2) - 4*x(:,2).72 + 4*x(:,2).74);

Plot the function.

[X,Y] = meshgrid(linspace(-2.1,2.1),linspace(-1.2,1.2));
Z = sixmin([X(:),Y(:)1);

Z = reshape(Z,size(X));

surf(X,Y,Z, 'EdgeColor', 'none")

view(-139,31)

The function has six local minima and two global minima.

Run surrogateopt on the problem using the 'surrogateoptplot' plot function in the region
bounded in each direction by [-2.1,2.1]. To understand the 'surrogateoptplot' plot, see
“Interpret surrogateoptplot” on page 10-25.

rng default
b =1[-2.1,-2.11;
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ub = -1b;
opts = optimoptions('surrogateopt', 'PlotFcn', 'surrogateoptplot');
[xs,fvals,eflags,outputs] = surrogateopt(sixmin,lb,ub,opts);

Best: -1.03163 Incumbent: 0.750489 Current: 12.2879
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Set a smaller value for the MinSurrogatePoints option to see whether the change helps the solver
reach the global minimum faster.

opts.MinSurrogatePoints = 4;
[xs2,fvals2,eflags2,outputs2] = surrogateopt(sixmin,lb,ub,opts);
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Best: -1.03163 Incumbent: -0.215392 Current: -0.201101
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

The smaller MinSurrogatePoints option does not noticeably change the solver behavior.

Try setting a larger value of the MinSampleDistance option.

opts.MinSampleDistance = 0.05;
[xs3,fvals3,eflags3,outputs3] = surrogateopt(sixmin,lb,ub,opts);
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Best: -1.03105 Incumbent: -0.668248 Current: 27.7271
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Changing the MinSampleDistance option has a small effect on the solver. This setting causes the
surrogate to reset more often, and causes the best objective function to be slightly higher (worse)
than before.

Try using parallel processing. Time the execution both with and without parallel processing on the
camelback function, which is a variant of the sixmin function. To simulate a time-consuming
function, the camelback function has an added pause of one second for each function evaluation.

type camelback

function y = camelback(x)

y = (4*x(1)72 - 2.1*x(1)"4 + x(1)"6/3 ...
+ X(1)*x(2) - 4*x(2)"2 + 4*x(2)"4);
pause(1)

tic
opts = optimoptions('surrogateopt', 'UseParallel',true, 'PlotFcn', 'surrogateoptplot');
[xs4,fvals4,eflags4,outputsd4] = surrogateopt(@camelback,lb,ub,opts);
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Best: -1.03163 Incumbent: -0.144762 Current: 15.3702
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

toc

Elapsed time is 43.142697 seconds.

Time the solver when run on the same problem in serial.
opts.UseParallel = false;

tic
[xs5, fvals5,eflags5,outputs5] = surrogateopt(@camelback,lb,ub,opts);
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Best: -1.03163 Incumbent: -1.03163 Ci.~, 4 {=[{M &, 2 7}
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

toc

Elapsed time is 227.968689 seconds.

For time-consuming objective functions, parallel processing significantly improves the speed, without
overly affecting the results.

See Also
surrogateopt

More About

. “Surrogate Optimization”
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Interpret surrogateoptplot

The surrogateoptplot plot function provides a good deal of information about the surrogate
optimization steps.

Minimize Bounded Function

For example, consider the plot of the steps surrogateopt takes on the built-in test function
rastriginsfcn. This function has a global minimum value of 0 at the point [0,0].

Create a surface plot of rastriginsfcn.

ezsurf(@(x,y)rastriginsfen([x(:),y(:)1));

rastriginsfen{[x(:),y(:)])

Plot Minimization Process

By giving asymmetric bounds, you encourage surrogateopt to search away from the global
minimum. Set asymmetric bounds of [ -3, -3] and [9, 10]. Set options to use the
surrogateoptplot plot function, and then call surrogateopt.

= [-3,-3];
ub = [9,10];
options = optimoptions('surrogateopt', 'PlotFcn', 'surrogateoptplot');
rng default
[x,fval] = surrogateopt(@rastriginsfcn,lb,ub,options);
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Interpret Plot

Begin interpreting the plot from its left side. For details of the algorithm steps, see “Surrogate
Optimization Algorithm” on page 10-3.

» The first points are black triangles, indicating quasirandom samples of the function within the
problem bounds. These points come from the Construct Surrogate phase.

* Next are black dots indicating the adaptive points, the points created in the Search for Minimum
phase.

» The thick green line represents the best (lowest) objective function value found. Shortly after
evaluation number 30, surrogateopt is stuck in a local minimum with an objective function
value near 5. Zoom in to see this behavior more clearly.

x1lim([20 100])
ylim([0 101])
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Best: 3.9812 Incumbent: 3.9812 Current: 18.9594
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* Near evaluation number 120, a vertical line indicates a surrogate reset. At this point, the
algorithm returns to the Construct Surrogate phase.

* The dark blue x points represent the incumbent, which is the best point found since the previous
surrogate reset.

* Near evaluation number 160, the incumbent improves on the previous best point by attaining a
value of about 4. After this evaluation number, the best point slowly drops in value. Zoom in to see
this behavior more clearly.

x1im([140 200])
ylim([0 6])
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* The optimization halts at evaluation number 200 because it is the default function evaluation limit
for a 2-D problem.

Problem with Nonlinear Constraints

The surrogateoptplot display changes when you have nonlinear constraints. Impose the
constraint that x (1) is integer-valued, and the nonlinear constraint that x, = x? — 2. For the function
that implements this constraint, see rasfcn on page 10-0  at the end of this example.

fun = @rasfcn;
Set integer constraints by setting intcon = 1, and run the minimization.

intcon

=1;
[x,fval] =

surrogateopt(fun,lb,ub,intcon,options);
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Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

The plot now shows red markers where surrogateopt evaluates an infeasible point. The final point
is close to the true minimum point of [0,0].

disp(x)
1.0e-03 *

0 -0.3913

The integer constraint likely helps surrogateopt find the true minimum, by reducing the search
space.

function F = rasfcn(x)
F.Fval rastriginsfcn(x);
F.Ineq x(1)"2 - 2 - x(2);
end

See Also
surrogateopt

More About
. “Surrogate Optimization Algorithm” on page 10-3
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. “Surrogate Optimization”
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Compare Surrogate Optimization with Other Solvers

This example compares surrogateopt to two other solvers: fmincon, the recommended solver for
smooth problems, and patternsearch, the recommended solver for nonsmooth problems. The
example uses a nonsmooth function on a two-dimensional region.

type nonSmoothFcn

function [f, g] = nonSmoothFcn(x)
%NONSMOOTHFCN is a non-smooth objective function

%  Copyright 2005 The MathWorks, Inc.

for i = 1l:size(
if x(i,1

f(i) =
elseif x(i,
f(i) =
elseif x(i,1) >= 0
f(i) = .3*sqrt(x(i,1)) + 25 +abs(x(i,2)) + patho(x(i,:));
end
end

%Calculate gradient

g = NaN;
if x(i,1) < -7
g = 2*¥[x(i,1); x(i,2)]1;
elseif x(i,1) < -3
g = [-2*%cos(x(i,1))-(x(i,2)"2)/10; -x(i,1)*x(i,2)/5];
elseif x(i,1) < O
[fp,gp]l = patho(x(1i,:));
if x(i,2) > 0
g = [x(i,1)+gp(1); 1+gp(2)];
elseif x(1i,2) < O
g = [x(i,1)+gp(1); -1+gp(2)];
end
elseif x(i,1) >0
[fp,gpl = patho(x(i,:));
if x(i,2) > 0

g = [.15/sqrt(x(i,1))+gp(1); 1+ gp(2)];
elseif x(1i,2) < O
g = [.15/sqrt(x(i,1))+gp(1); -1+ gp(2)1;
end
end

function [f,g] = patho(x)

Max = 500;

f = zeros(size(x,1),1);

g = zeros(size(x));

for k = 1:Max %k
arg = sin(pi*k~2*x)/(pi*k~2);
f f + sum(arg,2);
g g + CoS(pi*k™2*x);

end
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mplier = 0.1; % Scale the control variable

Objfcn = @(x)nonSmoothFcn(mplier*x); % Handle to the objective function
range = [-6 6;-6 6]/mplier; % Range used to plot the objective function
rng default % Reset the global random number generator
showNonSmoothFcn(0bjfcn, range);

title('Nonsmooth Objective Function')

view(-151,44)

Nons mooth Objective Function

drawnow

See how well surrogateopt does in locating the global minimum within the default number of
iterations.

-6*ones(1,2)/mplier;
ub -1b;
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,1lb,ub);
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Best Function Value: 13

| - Best function value
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Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

fprintf("Lowest found value = %g.\r", fvals)
Lowest found value = 13.

figure

showNonSmoothFcn(0bjfcn, range);

view(-151,44)

hold on

pl = plot3(xs(1l),xs(2),fvals, 'om', 'MarkerSize', 15, '"MarkerFaceColor','m');
legend(pl,{'Solution'})

hold off

10-33



10 Surrogate Optimization

® Solution

Compare with patternsearch

Set patternsearch options to use the same number of function evaluations, starting from a random

point within the bounds.

rng default

X0 = 1b + rand(size(1lb)).*(ub - 1b);

optsps = optimoptions('patternsearch', '"MaxFunctionEvaluations',200, 'PlotFcn', 'psplotbestf');
[xps, fvalps,eflagps,outputps] = patternsearch(Objfcn,x0,[1,[1,[1,[]1,lb,ub,[],0ptsps);

Optimization terminated: mesh size less than options.MeshTolerance.
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Best Function Value: 13
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figure

showNonSmoothFcn(0bjfcn, range);

view(-151,44)

hold on

pl = plot3(x0(1),x0(2),0bjfcn(x0), 'ob', 'MarkerSize',12, 'MarkerFaceColor','b");
p2 = plot3(xps(1l),xps(2),fvalps, 'om', 'MarkerSize', 15, 'MarkerFaceColor', 'm');
legend([pl,p2],{'Start Point', 'Solution'})

hold off
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@ Start Point
@ Solution

patternsearch found the same solution as surrogateopt.

Restrict the number of function evaluations and try again.

optsurr = optimoptions('surrogateopt', 'MaxFunctionEvaluations',b40);
[xs,fvals,eflags,outputs] = surrogateopt(Objfcn,lb,ub,optsurr);
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Best Function Value: 13.0238
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Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

40;
patternsearch(0Objfcn,x0,[1,[1,[1,[]1,lb,ub,[],0optsps);

optsps.MaxFunctionEvaluations
[xps, fvalps,eflagps,outputps]

Maximum number of function evaluations exceeded: increase options.MaxFunctionEvaluations.
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Best Function Value: 13.0983
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Again, both solvers found the global solution quickly.
Compare with fmincon

fmincon is efficient at finding a local solution near the start point. However, it can easily get stuck
far from the global solution in a nonconvex or nonsmooth problem.

Set fmincon options to use a plot function, the same number of function evaluations as the previous
solvers, and the same start point as patternsearch.

opts = optimoptions('fmincon', 'PlotFcn', 'optimplotfval', 'MaxFunctionEvaluations',200);
[fmsol, fmfval,eflag, fmoutput] = fmincon(Objfcn,x0,[1,[1,[1,[1,1lb,ub,[],0pts);
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Current Function Value: 30.1703
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Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

figure

showNonSmoothFcn(0bjfcn, range);

view(-151,44)

hold on

pl = plot3(x0(1),x0(2),0bjfcn(x0), " 'ob"', 'MarkerSize',12, 'MarkerFaceColor','b');
p2 = plot3(fmsol(1l),fmsol(2),fmfval, 'om', 'MarkerSize',15, 'MarkerFaceColor','m');
legend([pl,p2],{'Start Point', 'Solution'})

hold off
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@ Start Point
® Solution

fmincon is stuck in a local minimum near the start point.

See Also

fmincon | patternsearch | surrogateopt

More About

. “Modify surrogateopt Options” on page 10-19

. “Surrogate Optimization of Multidimensional Function” on page 10-12
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Surrogate Optimization with Nonlinear Constraint

This example shows how to include nonlinear inequality constraints in a surrogate optimization. The
example solves an ODE with a nonlinear constraint. The example “Optimize an ODE in Parallel” on
page 5-81 shows how to solve the same problem using other solvers that accept nonlinear
constraints.

For a video overview of this example, see Surrogate Optimization.
Problem Description

The problem is to change the position and angle of a cannon to fire a projectile as far as possible
beyond a wall. The cannon has a muzzle velocity of 300 m/s. The wall is 20 m high. If the cannon is
too close to the wall, it fires at too steep an angle, and the projectile does not travel far enough. If the
cannon is too far from the wall, the projectile does not travel far enough.

Nonlinear air resistance slows the projectile. The resisting force is proportional to the square of
velocity, with the proportionality constant 0.02. Gravity acts on the projectile, accelerating it
downward with constant 9.81 m/s”~2. Therefore, the equations of motion for the trajectory x(t) are

d’x(t)
dt?

= —0.02|v(t)|v(t) — (0,9.81),

where v(t) = dx(t)/dt.

The initial position x0 and initial velocity xp0 are 2-D vectors. However, the initial height x0(2) is 0,
so the initial position is given by the scalar x0(1). The initial velocity has magnitude 300 (the muzzle
velocity) and, therefore, depends only on the initial angle, which is a scalar. For an initial angle th,
the initial velocity is xp@ = 300* (cos(th),sin(th)). Therefore, the optimization problem
depends only on two scalars, making it a 2-D problem. Use the horizontal distance and initial angle as
the decision variables.

Formulate ODE Model

ODE solvers require you to formulate your model as a first-order system. Augment the trajectory
vector (x1(t), xp(t)) with its time derivative (x1'(t), xp'(t)) to form a 4-D trajectory vector. In terms of this
augmented vector, the differential equation becomes

x3(t)
ix(t) _ x4(t)
dt —0. 02[|(x3(t), xa(t))[x3(t)

)
—0.02]|(x3(t), xa(t))lIxa(t) = 9.81

The cannonshot file implements this differential equation.
type cannonshot

function f = cannonshot(~,x)

3);x(4);x(3);x(4)]; % initial, gets f(1) and f(2) correct
orm(x(3:4)) * .02; % norm of the velocity times constant
-X(3)*nrm; % horizontal acceleration

-X(4)*nrm - 9.81; % vertical acceleration
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Visualize the solution of this ODE starting 30 m from the wall with an initial angle of pi/3. The
plotcannonsolution function uses ode45 to solve the differential equation.

type plotcannonsolution

function dist = plotcannonsolution(x)

% Change initial 2-D point x to 4-D x0

x0 = [x(1);0;300*cos(x(2));300*sin(x(2))]1;

sol = ode45(@cannonshot,[0,15],x0);

% Find the time when the projectile lands
zerofnd = fzero(@(r)deval(sol,r,2),[sol.x(2),sol.x(end)]);
t = linspace(0,zerofnd); % equal times for plot
xs = deval(sol,t,1); % interpolated x values

ys = deval(sol,t,2); % interpolated y values
plot(xs,ys)

hold on

plot([0,0],[0,20],'k"') % Draw the wall
xlabel('Horizontal distance')
ylabel('Trajectory height')

ylim([0 100])
legend('Trajectory', 'Wall', 'Location', '"NW')
dist = xs(end);

title(sprintf('Distance %f',dist))

hold off

plotcannonsolution uses fzero to find the time when the projectile lands, meaning its height is
0. The projectile lands before time 15 s, so plotcannonsolution uses 15 as the amount of time for
the ODE solution.

x0

= [-30;pi/3];
dist =

plotcannonsolution(x0);
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Prepare Optimization

To optimize the initial position and angle, write a function similar to the previous plotting routine.
Calculate the trajectory starting from an arbitrary horizontal position and initial angle.

Include sensible bound constraints. The horizontal position cannot be greater than 0. Set an upper
bound of -1. Similarly, the horizontal position cannot be below -200, so set a lower bound of -200.

The initial angle must be positive, so set its lower bound to 0.05. The initial angle should not exceed
pi/2; set its upper bound to pi/2 - 0.05.

1b -200;0.05];
ub -1;pi/2-.05];

[
[

Write an objective function that returns the negative of the resulting distance from the wall, given an
initial position and angle. If the trajectory crosses the wall at a height less than 20, the trajectory is
infeasible; this constraint is a nonlinear constraint. The cannonobjcon function implements the
objective function calculation. To implement the nonlinear constraint, the function calls fzero to find
the time when the x-value of the projectile is zero. The function accounts for the possibility of failure
in the fzero function by checking whether, after time 15, the x-value of the projectile is greater than
zero. If not, then the function skips the step of finding the time when the projectile passes the wall.

type cannonobjcon
function f = cannonobjcon(x)
% Change initial 2-D point x to 4-D x0

x0 = [x(1);0;300*cos(x(2));300*sin(x(2))1;
% Solve for trajectory
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sol = ode45(@cannonshot,[0,15],x0);
% Find time t when trajectory height = 0
zerofnd = fzero(@(r)deval(sol,r,2),[1le-2,15]1);
% Find the horizontal position at that time
dist = deval(sol,zerofnd,1);
% What is the height when the projectile crosses the wall at x = 07
if deval(sol,15,1) > 0
wallfnd = fzero(@(r)deval(sol,r,1),[0,15]);
height = deval(sol,wallfnd,2);
else
height = deval(sol,15,2);
end
f.Ineq = 20 - height; % height must be above 20
% Take negative of distance for maximization
f.Fval = -dist;
end

You already calculated one feasible initial trajectory. Use that value as an initial point.

fx0 = cannonobjcon(x0);
fx0.X = x0;

Solve Optimization Using surrogateopt

Set surrogateopt options to use the initial point. For reproducibility, set the random number
generator to default. Use the 'surrogateoptplot' plot function. Run the optimization. To
understand the 'surrogateoptplot' plot, see “Interpret surrogateoptplot” on page 10-25.

opts = optimoptions('surrogateopt','InitialPoints',x0, 'PlotFcn', 'surrogateoptplot');

rng default
[xsolution,distance,exitflag,output] = surrogateopt(@cannonobjcon,lb,ub,opts)
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Best: -125.999 Incumbent: -125.773 Current: -125.773

200
v Random Samples (Infeas)
. Adaptive Samples (Infeas)
150 % Incumbent (Infeas)
Surrogate Reset
v 0 Best
| = ® Incumbent
= i v & Initial Samples
o v v  Random Samples
i3] = Adaptive Samples
= 50 %
i A
@ -
=
E D | = v v
v
I v
] v v
%

_15:. i i i i i i i i ]
0 20 40 60 80 100 120 140 160 180 200

NMumber of Function Evaluations

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

xsolution = 1Ix2

-28.3776 0.6165

-125.9986

distance
exitflag = 0

output = struct with fields:
elapsedtime: 46.8082
funccount: 200
constrviolation: 7.6395e-04
ineq: 7.6395e-04
rngstate: [1x1 struct]
message: 'surrogateopt stopped because it exceeded the function evaluation limit set

Plot the final trajectory.

figure
dist = plotcannonsolution(xsolution);
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The patternsearch solution in “Optimize an ODE in Parallel” on page 5-81 shows a final distance of
125.9880, which is almost the same as this surrogateopt solution.

See Also
surrogateopt

More About

. “Optimize an ODE in Parallel” on page 5-81
. Surrogate Optimization
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Surrogate Optimization of Six-Element Yagi-Uda Antenna

Surrogate Optimization of Six-Element Yagi-Uda Antenna

This example shows how to optimize an antenna design using the surrogate optimization solver. The
radiation patterns of antennas depend sensitively on the parameters that define the antenna shapes.
Typically, the features of a radiation pattern have multiple local optima. To calculate a radiation
pattern, this example uses Antenna Toolbox™ functions.

A Yagi-Uda antenna is a widely used radiating structure for a variety of applications in commercial
and military sectors. This antenna can receive TV signals in the VHF-UHF range of frequencies [1].
The Yagi-Uda is a directional traveling-wave antenna with a single driven element, usually a folded
dipole or a standard dipole, which is surrounded by several passive dipoles. The passive elements
form the reflector and director. These names identify the positions relative to the driven element. The
reflector dipole is behind the driven element, in the direction of the back lobe of the antenna
radiation. The director dipole is in front of the driven element, in the direction where a main beam
forms.

Design Parameters

Specify the initial design parameters in the center of the VHF band [2].

freq = 165€6;

wirediameter = 19e-3;

¢ = physconst('lightspeed');
lambda = c/freq;

Create Yagi-Uda Antenna

The driven element for the Yagi-Uda antenna is a folded dipole, a standard exciter for this type of
antenna. Adjust the length and width parameters of the folded dipole. Because cylindrical structures
are modeled as equivalent metal strips, calculate the width using the cylinder2strip utility
function available in the Antenna Toolbox™. The length is A/2 at the design frequency.

d = dipoleFolded;

d.Length = lambda/2;

d.Width = cylinder2strip(wirediameter/2);
d.Spacing = d.Length/60;

Create a Yagi-Uda antenna with the exciter as the folded dipole. Set the lengths of the reflector and
director elements to be A/2. Set the number of directors to four. Specify the reflector and director
spacing as 0.32 and 0.252, respectively. These settings provide an initial guess and serve as a
starting point for the optimization procedure. Show the initial design.

Numdirs = 4;
refLength ;
dirLength *ones(1,Numdirs);

refSpacing = 0.3;

dirSpacing = 0.25*ones(1,Numdirs);

initialdesign = [refLength dirLength refSpacing dirSpacing].*lambda;
yagidesign = yagilUda;

yagidesign.Exciter = d;

yagidesign.NumDirectors = Numdirs;

yagidesign.ReflectorLength = refLength*lambda;
yagidesign.DirectorLength = dirLength.*lambda;
yagidesign.ReflectorSpacing = refSpacing*lambda;
yagidesign.DirectorSpacing = dirSpacing*lambda;

show(yagidesign)

o
[oNo]
(O, 100,]
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Plot Radiation Pattern at Design Frequency

Prior to executing the optimization process, plot the radiation pattern for the initial guess in 3-D.

figl = figure;
pattern(yagidesign, freq);
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Output : Directivity
Frequency : 165 MHz
htax value : 4.52 dBi
hiin value :-27.5 dBi
Azimuth : [[180°, 1807
Bewation : [-90°, 90°]
0
1-5
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....................................... =20
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- 25
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Show Antenna e

This antenna does not have a higher directivity in the preferred direction, at zenith (elevation = 90
deg). This initial Yagi-Uda antenna design is a poorly designed radiator.

Set Up Optimization

Use the following variables as control variables for the optimization:

Reflector le

ngth (1 variable)

Director lengths (4 variables)

Reflector spacing (1 variable)

Director spacings (4 variables)

In terms of a single vector parameter parasiticVals, use these settings:

Reflector length = parasiticVals(1)

Director lengths = parasiticVals(2:5)
Reflector spacing = parasiticVals(6)
Director spacings = parasiticVals(7:10)

In terms of parasiticVals, set an objective function that aims to have a large value in the 90-
degree direction, a small value in the 270-degree direction, and a large value of maximum power
between the elevation beamwidth angle bounds.

type yagi objective function2.m
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function objectivevalue =

0° 0° o° o° o°

o° o o°

o°

yagi objective function2 returns the objective for a 6-element Yagi
objective value = yagi objective function(y,parasiticvals, freq,elang)
assigns the appropriate parasitic dimensions, parasiticvals, to the Yagi
antenna y, and uses the frequency freq and angle pair elang to calculate
the objective function value.

The yagi objective function2 function is used for an internal example.
Its behavior might change in subsequent releases, so it should not be
relied upon for programming purposes.

Copyright 2014-2018 The MathWorks, Inc.

bwl = elang(1l);

bw2 = elang(2);

y.ReflectorLength = parasiticVals(1l);

y.DirectorLength = parasiticVals(2:y.NumDirectors+1);
y.ReflectorSpacing = parasiticVals(y.NumDirectors+2);
y.DirectorSpacing = parasiticVals(y.NumDirectors+3:end);
output = calculate objectives(y, freq,bwl,bw2);

output = output.MaxDirectivity + output.FB;

objectivevalue= -output; % To maximize
end

function output =

calculate objectives(y,freq,bwl,bw2)

%scalculate objectives calculate the objective function

output = calculate objectives(y,freq,bwl,bw2) Calculate the directivity
in az = 90 plane that covers the main beam, sidelobe and backlobe.
Calculate the maximum directivity, sidelobe level and backlobe and store

yagi objective function2(y,parasiticVals, freq,elang)

0° o° o° o°

[es,~,el] = pattern(y,freq,90,0:1:270)
ell el < bwl;

el2 el > bw2;

el3 el>bwl&el<bw2;

emainlobe = es(el3);

esidelobes =([es(ell);es(el2)]);
Dmax = max(emainlobe);

SLLmax = max(esidelobes);
Backlobe = es(end);

F = es(91);

B = es(end);

F by B = F-B;
output.MaxDirectivity= Dmax;
output.MaxSLL = SLLmax;
output.BackLobelLevel = Backlobe;
output.FB = F by B;

end

Set bounds on the control variables.

’

in fields of the output variable structure.

refLengthBounds = [0.4;
0.61;
dirLengthBounds = [0.35 0.35 0.35 0.35; % Llower bound on director length
0.495 0.495 0.495 0.495]; % upper bound on director length
refSpacingBounds = [0.05; % lower bound on reflector spacing
0.30]; % upper bound on reflector spacing
dirSpacingBounds = [0.05 0.05 0.05 0.05; % lower bound on director spacing
0.23 0.23 0.23 0.23]; % upper bound on director spacing
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LB
uB

[refLengthBounds (1) dirLengthBounds(1l,:) refSpacingBounds(1l) dirSpacingBounds(1,:) ].*lambd:
[refLengthBounds(2) dirLengthBounds(2,:) refSpacingBounds(2) dirSpacingBounds(2,:) ].*lambd:

Set the initial point for the optimization, and set the elevation beamwidth angle bounds.

parasitic values = [ yagidesign.ReflectorLength,
yagidesign.DirectorLength,
yagidesign.ReflectorSpacing
yagidesign.DirectorSpacing];

elang = [60 120]; % elevation beamwidth angles at az = 90
Surrogate Optimization

To search for a global optimum of the objective function, use surrogateopt as the solver. Set
options to allow 500 function evaluations, include the initial point, use parallel computation, and use
the 'surrogateoptplot' plot function. To understand the 'surrogateoptplot' plot, see
“Interpret surrogateoptplot” on page 10-25..

surrogateoptions = optimoptions('surrogateopt', 'MaxFunctionEvaluations',500,...
"InitialPoints',parasitic_values, 'UseParallel',true, 'PlotFcn', 'surrogateoptplot');
rng(4) % For reproducibility
optimdesign = surrogateopt(@(x) yagi objective function2(yagidesign,x,freq,elang),...
LB,UB, surrogateoptions);

Best: -68.606 Incumbent: -29.6176 Current: -20.2622

60 |
v Surrogate Reset
0 Best
a0 r ¥ % Incumbent
7  Random Samples
v )
. Adaptive Samples
¥ w
20
c
=]
e
=
s 0
[
i}
=
B -
E 20
=
]

IS
o

60

0 50 100 150 200 250 300 350 400 450 500
Number of Function Evaluations

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.
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surrogateopt found a point giving an objective function value of -70. Investigate the effect of the

optimized parameters on the radiation pattern of the antenna.
Plot Optimized Pattern

Plot the optimized antenna pattern at the design frequency.

yagidesign.ReflectorLength = optimdesign(1l);
optimdesign(2:5);
optimdesign(6);
optimdesign(7:10);

yagidesign.DirectorLength =
yagidesign.ReflectorSpacing
yagidesign.DirectorSpacing
fig2 = fiqure;
pattern(yagidesign, freq)

Output : Directivity
Frequency : 165 WHz
htax value : 10.2 dBi

hin walue :-48.2 dBi
Agimuth : [-180°, 1807
Bewation : [-90°, 907

Showy Antenna w

Apparently, the antenna now radiates significantly more power at zenith.

E-Plane and H-Plane Cuts of Pattern

10

1-10

1-20

To obtain a better insight into the behavior in two orthogonal planes, plot the normalized magnitude
of the electric field in the E-plane and H-plane, that is, azimuth = 0 and 90 deg, respectively.

fig3 = fiqgure;
pattern(yagidesign,freq,0,0:1:359);
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Directivity (dBi)
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figd = figure;
pattern(yagidesign,freq,90,0:1:359);
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The optimized design shows a significant improvement in the radiation pattern. Higher directivity is
achieved in the desired direction toward zenith. The back lobe is small, resulting in a good front-to-
back ratio for this antenna. Calculate the directivity at zenith, front-to-back ratio, and beamwidth in
the E-plane and H-plane.

D max = pattern(yagidesign,freq,0,90)
D max = 10.2145

D back = pattern(yagidesign,freq,0,-90)

D _back

-48.1770
F B ratio = D max - D back

F B ratio = 58.3915

Eplane_beamwidth beamwidth(yagidesign,freq,0,1:1:360)

Eplane_beamwidth = 54
Hplane beamwidth = beamwidth(yagidesign,freq,90,1:1:360)

Hplane beamwidth = 68

Comparison with Manufacturer Datasheet

The optimized Yagi-Uda antenna achieves a forward directivity of 10.2 dBi, which translates to 8.1
dBd (relative to a dipole). This result is a bit less than the gain value reported by the datasheet in
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reference [2] (8.5 dBd). The front-to-back ratio is 60 dB; this is part of the quantity that the optimizer
maximizes. The optimized Yagi-Uda antenna has an E-plane beamwidth of 54 deg, whereas the
datasheet lists the E-plane beamwidth as 56 deg. The H-plane beamwidth of the optimized Yagi-Uda
antenna is 68 deg, whereas the value on the datasheet is 63 deg. The example does not address
impedance matching over the band.

Tabulating Initial and Optimized Design

Tabulate the initial design guesses and the final optimized design values.

yagiparam= {'Reflector Length';
'Director Length - 1'; 'Director Length - 2';
'Director Length - 3'; 'Director Length - 4';
'Reflector Spacing'; ‘Director Spacing - 1°';
‘Director Spacing - 2';'Director Spacing - 3';
'‘Director Spacing - 4'};

initialdesign = initialdesign';

optimdesign = optimdesign';

T = table(initialdesign,optimdesign, 'RowNames',yagiparam)

T=10%x2 table

initialdesign optimdesign
Reflector Length 0.90846 0.92703
Director Length - 1 0.90846 0.71601
Director Length - 2 0.90846 0.7426
Director Length - 3 0.90846 0.68847
Director Length - 4 0.90846 0.75779
Reflector Spacing 0.54508 0.3117
Director Spacing - 1 0.45423 0.28684
Director Spacing - 2 0.45423 0.23237
Director Spacing - 3 0.45423 0.21154
Director Spacing - 4 0.45423 0.27903

Reference
[1] Balanis, C. A. Antenna Theory: Analysis and Design. 3rd ed. New York: Wiley, 2005, p. 514.

[2] Online at: https://amphenolprocom.com/products/base-station-antennas/2450-s-6y-165

See Also
surrogateopt

More About

. “Surrogate Optimization”
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Work with Checkpoint Files

10-56

In this section...

“Checkpoint for Restarting” on page 10-56
“Change Options to Extend or Monitor Optimization” on page 10-58

“Code for Robust Surrogate Optimization” on page 10-60

Checkpoint for Restarting

A checkpoint file contains data about the optimization process. To obtain a checkpoint file, use the
CheckpointFile option.

One basic use of a checkpoint file is to resume an optimization when it stops prematurely. The cause
of the premature stopping can be events such as a power failure or a crash, or when you press the
Stop button in a plot function window.

Whatever the reason for the premature stopping, the restart procedure is simply to call
surrogateopt with the checkpoint file name.

For example, suppose that you run an optimization with the ' checkl' checkpoint file, and then click
the Stop button soon after the optimization starts.

options = optimoptions('surrogateopt', 'CheckpointFile"', 'checkl.mat');
b =[-6,-8];

ub = -1b;

fun = @(x)100*(x(2) - x(1)72)"2 + (1 - x(1))"2;
[x,fval,exitflag,output] = surrogateopt(fun,lb,ub,options)
Optimization stopped by a plot function or output function.

X =

fval

exitflag =

-1

output =
struct with fields:

elapsedtime: 15.3330
funccount: 30
constrviolation: 0
ineq: [1x0 doublel
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rngstate: [1x1 struct]
message: 'Optimization stopped by a plot function or output function.'

x 105 Best Function Value: 1

| * Best function wvalue

Function value
e
T

0.8

0.6

041

0.2r

pH—————d
0 ] 10 15 20 25 30
lteration

Note Checkpointing takes time. This overhead is especially noticeable for functions that otherwise
take little time to evaluate.

To resume the optimization, call surrogateopt with the 'checkl.mat' argument.
[x,fval,exitflag,output] = surrogateopt('checkl.mat")

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

X =

1.0186 1.0377

fval =

3.4902e-04

exitflag =

0
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output =
struct with fields:

elapsedtime: 181.5824
funccount: 200
constrviolation: 0
ineq: [1x0 doublel
rngstate: [1x1 struct]
message: 'Surrogateopt stopped because it exceeded the function evaluation limit set

g X 10° Best Function Value: 0.000349017
. | * Best function value
18r
16
14r

Function value
e
T

0 20 40 B0 BO 100 120 140 160 1BO 200
Iteration

Change Options to Extend or Monitor Optimization

You can extend an optimization, whether it stops due to an unforeseen event or not, by changing the
stopping criteria in the options. You can also monitor the optimization by displaying information at
each iteration.

Note surrogateopt allows you to change only a limited set of options. For reliability, update the
original options structure instead of creating new options.

For a list of the options you can change when restarting, see opts.
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For example, suppose that you want to extend the previous optimization to run for a total of 400
function evaluations. Additionally, you want to monitor the optimization using the
'surrogateoptplot’ plot function.

opts = optimoptions(options, 'MaxFunctionEvaluations',b400,...
'PlotFcn', 'surrogateoptplot');
[x,fval,exitflag,output] = surrogateopt('checkl.mat',opts)

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

X =

1.0186 1.0377

fval =

3.4902e-04

exitflag =

0

output =
struct with fields:

elapsedtime: 959.7619
funccount: 400
constrviolation: 0
ineq: [1x0 doublel
rngstate: [1x1 struct]
message: 'Surrogateopt stopped because it exceeded the function evaluation limit set
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The new plot function plots from the beginning of the optimization, even though you started the plot
function only after the solver stopped at function evaluation number 200. The 'surrogateoptplot’
plot function also shows the evaluation numbers where the optimization stopped and where it
restarted from the checkpoint file.

Code for Robust Surrogate Optimization

To restart a surrogate optimization from a checkpoint file only if the file exists, use the following code
logic. In this way, you can write scripts to keep an optimization going, even after a crash or other
unexpected event.

% Assume that myfun, lb, and ub exist

if isfile('saveddata.mat')
[x,fval,exitflag,output] = surrogateopt('saveddata.mat');

else
options = optimoptions("surrogateopt","CheckpointFile", 'saveddata.mat');
[x,fval,exitflag,output] = surrogateopt(myfun,lb,ub,options);

end

See Also
surrogateopt
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More About

. “Surrogate Optimization”
. “Surrogate Optimization Options” on page 15-50
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Mixed-Integer Surrogate Optimization

This example shows how to solve an optimization problem that involves integer variables. Beginning
in R2019b, surrogateopt accepts integer constraints. In this example, find the point x that
minimizes the multirosenbrock function over integer-valued arguments ranging from -3 to 6 in ten
dimensions. The multirosenbrock function is a poorly scaled function that is difficult to optimize.

Its minimum value is 0, which is attained at the point [1,1,...,1]. Code for the

multirosenbrock function appears at the end of this example.

rng(l, 'twister') % For reproducibility
nvar = 10; % Any even number

lb = -3*ones(1,nvar);

ub = 6*ones(1,nvar);

fun = @multirosenbrock;

intcon = 1l:nvar; % ALl integer variables
[sol,fval] = surrogateopt(fun,lb,ub,intcon)

x 10% Best Function Value: 0

Function value
Y
T

Best function value

0 . { . . .
0 50 100 150 200 250 300
Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by

'options.MaxFunctionEvaluations'.
sol = 1Ix10

1 1 1 1 1 1 1 1

fval = 0
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Mixed-Integer Surrogate Optimization

In this case, surrogateopt finds the solution.
Helper Function

This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)
This function is a multidimensional generalization of Rosenbrock's
function. It operates in a vectorized manner, assuming that x is a matrix
whose rows are the individuals.
Copyright 2014 by The MathWorks, Inc.
= size(Xx,2); % assumes X is a row vector or 2-D matrix
if mod(N,2) % if N is odd
error('Input rows must have an even number of elements')

= 0% o° o° o°

F = zeros(si ));

X
x(:,odds);
*(x(:,evens)-x(:,odds).”2);

See Also
surrogateopt

More About

. “Surrogate Optimization”
. “Mixed Integer ga Optimization” on page 7-37
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Fix Variables in surrogateopt

This example shows how to fix the values of some control variables, by removing them from an
optimization. Although the easiest way to fix values is to set equal upper and lower bounds, some
solvers do not allow equal bounds. However, surrogateopt handles equal bounds well by internally
removing fixed variables from the problem before trying to optimize.

The multirosenbrock function accepts any even number of control variables. Its minimum value of
0 is attained at the point [1,1,...,1,1]. Set lower bounds of -1 and upper bounds of 5 for ten
variables, and then set the first six upper and lower bounds equal to 1. This setting removes six
variables from the problem, leaving a problem with four variables.

lb = -1*ones(1,10);
ub = 5*ones(1,10);
lb(1l:6) = 1;
ub(1l:6) = 1;

Solve the problem.

fun = @multirosenbrock;
rng default % For reproducibility
[x,fval,exitflag] = surrogateopt(fun,lb,ub)

Best Function Value: 0.42178
900 r

| * Best function value

800 ™=

700

600

500

400

Function value

300

200

100 F e

0 50 100 150 200 250 300 350 400 450 500
Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.
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X = 1x10

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4334 0.1786 0.7177

fval = 0.4218
exitflag = 0

The solver returns a point close to the global minimum. Notice that the solver takes 500 function
evaluations, which is the default value for a problem with 10 variables. The solver does not change
this default value even when you fix some variables.

When you do not fix any variables, the solver does not reach a point near the global minimum.

b -1*ones(1,10);

ub = 5*ones(1,10);

rng default % For reproducibility
[x,fval,exitflag] = surrogateopt(fun,lb,ub)

Best Function Value: 0.62091

2500 r
| * Best function value

2000 ™
g
= 1500 .
=
=
=]
©
S 1000 |
L

500 -
—
0 | — | ! | | | | |
0 50 100 150 200 250 300 450 400 450 500

Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

x = 1x10

1.3840 1.9253 1.1837 1.4091 0.9075 0.8123 1.3796 1.8995 1.4982

fval = 0.6209
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exitflag = 0

See Also
surrogateopt

More About

. “Surrogate Optimization”
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Integer Optimization with Custom Output Function

This example shows how to choose the resistors and thermistors in a circuit to best match a specified
curve at one point in the circuit. You must choose all of the electronic components from a list of
available components, which means this is a discrete optimization problem. To help visualize the
progress of the optimization, the example includes a custom output function that displays the quality
of the intermediate solutions as the optimization progresses. Because this is an integer problem with
a nonlinear objective function, use the surrogateopt solver.

This example is adapted from Lyon [1].
Problem Description
The problem involves this circuit.

— 1.1V

A

N

(Thermistor)

R2

iy
o

R33 2 TH2

(Thermistor)

A voltage source holds point A at 1.1V. The problem is to select resistors and thermistors from a list of
standard components so that the voltage at point B matches the target curve as a function of

temperature.
Tdata = -40:5:85;
Vdata = 1.026E-1 + -1.125E-4 * Tdata + 1.125E-5 * Tdata.”"2;

plot(Tdata,Vdata, '-*');
title('Target Curve', 'FontSize',12);
xlabel('Temperature (~oC)'); ylabel('Voltage (V)")
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Target Curve
0.18 . . . . . .

011 # b

ey ¥

0.1 '
-40 -20 0 20 40 G0 80 100

Temperature (°C)

Load the standard components list.

load StandardComponentValues

The Res vector contains the standard resistor values. The ThBeta and ThVal vectors contain
standard parameters for the thermistors. Thermistor resistance as a function of temperature T is

Rys

T-Tps\"
exp(ﬁr-—m)

* Rppis the thermistor resistance.

Ry =

* Rysis the resistance at 25 degrees Celsius, parameter ThVal.
* Tys5is the temperature 25 degrees Celsius.

* T is the current temperature.
* fis the thermistor parameter ThBeta.

Based on standard voltage calculations, the equivalent series values of the resistances of the Ry — Th;
block is

Requivalent _ RiThy
1 " Ry +Thy’

and the equivalent resistance of the R3 — Thy block is
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Requivalent — R3Th2
3 R34+ Thy’

Therefore, the voltage at point B is

equivalent
R} +Ry
Rtlaquwalent +Ry+ quuwalent +Ry

v=1.1

Convert Problem to Code

The problem is to choose resistors R through R4 and thermistors Th; and Th, so that the voltage V
best matches the target curve. Have the control variable x represent these values:

* X(1i) = index of R;, for i from 1 through 4
* Xx(5) =index of Thy
* X(6) = index of Thy

The tempCompCurve function calculates the resulting voltage in terms of x and the temperature
Tdata.

type tempCompCurve

function F = tempCompCurve(x,Tdata)

%% Calculate Temperature Curve given Resistor and Thermistor Values
% Copyright (c) 2012-2019, MathWorks, Inc.

%% Input voltage

Vin = 1.1;

%% Thermistor Calculations

% Values in x: R1 R2 R3 R4 RTH1(T 25degc) Betal RTH2(T 25degc) Beta2
% Thermistors are represented by:

% Room temperature is 25degc: T 25

% Standard value is at 25degc: RTHx 25

% RTHx is the thermistor resistance at various temperatures

% RTH(T) = RTH(T_25degc) / exp (Beta * (T-T_25)/(T*T_25))

T 25 = 298.15;

T off = 273.15;

Betal = x(6);

Beta2 = x(8);

RTH1 = x(5) ./ exp(Betal * ((Tdata+T off)-T 25)./((Tdata+T off)*T 25));
RTH2 = x(7) ./ exp(Beta2 * ((Tdata+T off)-T 25)./((Tdata+T off)*T 25));

%% Define equivalent circuits for parallel Rs and RTHs
R1 eq = x(1)*RTH1./(x(1)+RTH1);
R3 eq = x(3)*RTH2./(x(3)+RTH2);

%% Calculate voltages at Point B
F =Vin * (R3 eq + x(4))./(R1_eq + x(2) + R3_eq + x(4));

The objective function is the sum of squares of the differences between the target curve and the
resulting voltages for a set of resistors and thermistors, over the target range of temperatures.

type objectiveFunction

function G = objectiveFunction(x,StdRes, StdTherm Val, StdTherm Beta,Tdata,Vdata)
%% Objective function for the thermistor problem
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o°

Copyright (c) 2012-2019, MathWorks, Inc.

% StdRes = vector of resistor values
StdTherm val = vector of nominal thermistor resistances
StdTherm Beta = vector of thermistor temperature coefficients

o® o° of

o°

Extract component values from tables using integers in x as indices

y = zeros(8,1);

X = round(x); % in case of noninteger components
y(1l) = StdRes(x(1));

y(2) = StdRes(x(2));

y(3) = StdRes(x(3));

y(4) = StdRes(x(4));

y(5) = StdTherm Val(x(5));

y(6) = StdTherm Beta(x(5));

y(7) = StdTherm Val(x(6));

y(8) = StdTherm Beta(x(6));

% Calculate temperature curve for a particular set of components
F = tempCompCurve(y, Tdata);

% Compare simulated results to target curve
Residual = F(:) - Vdata(:);

Residual = Residual(1:2:26);

G = Residual'*Residual; % sum of squares

Monitor Progress

To observe the progress of an optimization, call an output function that plots the best response of the
system found so far and the target curve. The SurrOptimPlot function plots these curves, and
updates the curves only when the current objective function value decreases. This custom output
function is lengthy, so it is not shown here. To see the content of this output function, enter type
SurrOptimPlot.

Optimize Problem

To optimize the objective function, use surrogateopt, which accepts integer variables. First, set all
variables to be integer.

intCon = 1:6;
Set the lower bounds on all variables to 1.
1b = ones(1,6);

The upper bounds for the resistors are all the same. Set the upper bounds to the number of entries in
the Res data.

ub = length(Res)*ones(1,6);
Set the upper bounds for the thermistors to the number of entries in the ThBeta data.
ub(5:6) = length(ThBeta)*[1,1];

Set options to use the SurrOptimPlot custom output function, and to use no plot function. Also, to
protect against possible interruptions of the optimization, specify a checkpoint file named
'checkfile.mat'.
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options = optimoptions('surrogateopt', 'CheckpointFile','C:\TEMP\checkfile.mat', 'PlotFcn',[],...

'OutputFcn',@(al,a2,a3)SurrOptimPlot(al,a2,a3,Tdata,Vdata,Res,ThVal,ThBeta));

To give the algorithm a better initial set of points to search, specify a larger initial random sample
than the default.

options.MinSurrogatePoints = 50;
Run the optimization.

rng default For reproducibility

objconstr = @(x)objectiveFunction(x,Res,ThVal,ThBeta, Tdata,Vdata);

[xOpt,Fval] = surrogateopt(objconstr,lb,ub,intCon,options);
Thermistor Network Temperature Curve

019~

Optimal sclution found by
018 F surregateopt:

R1= 3600 chms

R2= 7T50chms
0.16 - R3= 430chms

R4 = 30 ohms
015" | TH1 = 10000 ohms, 3960 beta
044 | | THZ= B0ohms, 2750beta

01 ' ‘E}-._G_M —#— Ideal Curve

—&— surrogateopt Solution

0.09 I I I I I I i
=40 =20 0 20 40 60 80 100

Temperature (“C)

Surrogateopt stopped because it exceeded the function evaluation limit set by
"options.MaxFunctionEvaluations'.

Optimize with More Function Evaluations

To attempt to get a better fit, restart the optimization from the checkpoint file, and specify more
function evaluations. This time, use the surrogateoptplot plot function to monitor the
optimization process more closely.

clf % Clear previous figure

opts = optimoptions(options, 'MaxFunctionEvaluations', 600, 'PlotFcn', 'surrogateoptplot');
[xOpt,Fval] = surrogateopt('C:\TEMP\checkfile.mat"',opts);
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0.1

0.09

Thermistor Network Temperature Curve

Optimal solution found by
surrcgateopt:

R1= 43000 ochms
R2 = 8200 chms
R3 = 5100 ochms
R4 = 2000 ohms

TH1 = 33000 ohms, 3740beta

TH2 = 1000 ohms, 3580 beta

—%—Ideal Curve
—=—surrogateopt Solution

-40

20 40
Temperature (°C)

60 80

100
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Objective Function

Stop

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

Using more function evaluations improves the fit slightly.

14

127

107

2_‘;"

0

Pause

References

100

200

300

Best: 7.4935e-05 Incumbent: 0.00169138 Current: 0.00448398

Surrogate Reset
Checkpoint Resume
4 Best

* Incumbent

%  Random Samples
Adaptive Samples

L
v

v

b

aQ 4d g

B

?V
v
v
=
v
v

v

. RE I
0

400 500

Number of Function Evaluations

[1] Lyon, Craig K. Genetic algorithm solves thermistor-network component values. EDN Network,

March 19, 2008. Available at https://www.edn.com/design/analog/4326942/Genetic-

algorithm-solves-thermistor-network-component-values.

See Also

surrogateopt

More About

. “Surrogate Optimization”
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Convert Nonlinear Constraints Between surrogateopt Form and
Other Solver Forms

Why Convert Constraint Forms?

To try various solvers including surrogateopt on a problem that has nonlinear inequality
constraints, you must convert between the form required by surrogateopt and the form required
by other solvers.

Convert from surrogateopt Structure Form to Other Solvers

The objective function objconstr(x) for surrogateopt returns a structure. The Fval field
contains the objective function value, a scalar. The Ineq field contains a vector of constraint function
values. The solver attempts to make all values in the Ineq field be less than or equal to zero. Positive
values indicate a constraint violation.

Other solvers expect the objective function to return a scalar value, not a structure. Other solvers
also expect the nonlinear constraint function to return two outputs, c(x) and ceq(x), not a
structure containing c(x).

To convert the surrogateopt function objconstr(x) for use in other solvers:

» Set the objective function to @(x)objconstr(x).Fval.
* Set the nonlinear constraint function to @(x)deal(objconstr(x).Ineq,[]).

For example,

function ff = objconstr(x)

ff.Fval = norm(x)"2;
ff.Ineq = norm(x - [5,8])"2 - 25;
end

To solve a constrained minimization problem using objconstr, call surrogateopt.

1b [-10,-20];
ub [20,10];
sol = surrogateopt(@objconstr,lb,ub)

Surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol =

2.3325 3.7711
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Best Function Value: 19.6614
500 t

* Best function value (infeasible)
450 . Best function value

400

350

300

280
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Function value

150
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D i i i i i i i i i ]
0 20 40 60 80 100 120 140 180 180 200

Iteration

To solve the same problem using fmincon, split the objective and constraint into separate functions.
Include the nonlinear equality constraint as [ ] by using the deal function.

objfcn = @(x)objconstr(x).Fval;
nlcon = @(x)deal(objconstr(x).Ineq,[]);

Call fmincon with the objective function objfcn and nonlinear constraint function nlcon.

[solf, fvalf,eflag,output] = ...
fmincon(objfcn,[0,0],[1,[1,[1,[1,lb,ub,nlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,

and constraints are satisfied to within the value of the constraint tolerance.

solf =

2.3500 3.7600

fvalf =

19.6602

eflag =
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output =
struct with fields:

iterations: 7
funcCount: 24
constrviolation: O
stepsize: 2.0395e-05
algorithm: 'interior-point'
firstorderopt: 4.9651e-06
cgiterations: 0
message: '«Local minimum found that satisfies the constraints.«~Optimization complet

You can also use patternsearch or ga to solve the problem using the same conversion.

Convert from Other Solvers to surrogateopt Structure Form

If you have a problem written in the form for other solvers, use the packfcn function to convert the
objective and nonlinear constraints to the structure form for surrogateopt. If the objective function
is a function handle @obj and the nonlinear constraint function is @nlconst, then use the objective
function objconstr for surrogateopt.

objconstr = packfcn(@obj,@nlconst);
In this example, the objective function is Rosenbrock's function.
ros = @(x)100*(x(2) - x(1)72)"2 + (1 - x(1))"2;

Specify the constraint function to restrict the solution to lie inside a disk of radius 1/3 centered at the
point [1/3,1/3].

function [c,ceq] =
c = (x(1)-1/3)"2 +
ceq = [];

circlecon(x)
(x(2)-1/3)"2 - (1/3)72;

Set bounds of -2 and 2 on each component.

b
ub

['21'2];
[2,2];

Solve the problem using patternsearch starting from [0,0].

x0 = [0,0];
x = patternsearch(ros,x0,[1,[]1,[1,[],lb,ub,@circlecon)

Optimization terminated: mesh size less than options.MeshTolerance
and constraint violation is less than options.ConstraintTolerance.

X =
0.6523 0.4258

Convert the problem for solution by surrogateopt.
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objconstr = packfcn(ros,@circlecon);
xs = surrogateopt(objconstr,lb,ub)

Surrogateopt stopped because it exceeded the function evaluation limit set by
"options.MaxFunctionEvaluations'.

XS =

0.6543 0.4284

Best Function Value: 0.119479
4000

* Best function value (infeasible)
* Best function value

3500

3000

2500

2000

Function value

1500

1000

500

D ' | 1 | I I | I | |
0 20 40 60 80 100 120 140 180 180 200

Iteration

See Also
surrogateopt | packfcn

More About

. “Surrogate Optimization”
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Solve Feasibility Problem

10-78

Some problems require you to find a point that satisfies all constraints, with no objective function to
minimize. For example, suppose that you have the following constraints:

Y+x3)%+0.1y2 <1
y<exp(-x)—-3
ysx-4.

Do any points (x, y) satisfy the constraints? To find out, write a function that returns the constraints in
a structure field Ineq. Write the constraints in terms of a two-element vector x = (xq, xp) instead of

(x, y). Write each inequality as a function c(x), meaning the inequalities c(x) < 0, by subtracting the
right side of each inequality from both sides. To enable plotting, write the function in a vectorized
manner, where each row represents one point. The code for this helper function, named objconstr,
appears at the end of this example on page 10-0

Plot the points where the three functions satisfy equalities for -2 = x =2 and -4 = y < 2, and
indicate the inequalities by plotting level lines for function values equal to -1/2.

[XX,YY] = meshgrid(-2:0.1:2,-4:0.1:2);

ZZ = objconstr([XX(:),YY(:)]).Ineq;

ZZ = reshape(ZZ,[size(XX),3]);

h = figure;

ax = gca;

contour(ax,XX,YY,zZzZ(:,:,1),[-1/2 0],'r", 'ShowText', 'on"');
hold on

contour(ax,XX,YY,zZZ(:,:,2),[-1/2 0], 'k", 'ShowText', 'on"');
contour(ax,XX,YY,zZZ(:,:,3),[-1/2 0],'b", 'ShowText', 'on"');
hold off



Solve Feasibility Problem

The plot shows that feasible points exist near [1.75,-3].

Set lower bounds of -5 and upper bounds of 3, and solve the problem using surrogateopt.

rng(l) % For reproducibility

b = [-5,-5];

ub = [3,31;

[x,fval,exitflag,output,trials] = surrogateopt(@objconstr,lb,ub)
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Maximum Constraint Violation: -0.0949219
450

. Best function value (infeasible)
400 + . Best function value

350

300
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Constraint violation

100

0 20 40 60 BO 100 120 140 160 180 200
Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

X = 1Ix2

1.7249 -2.9167

fval =

1x0 empty double row vector
exitflag = 0

output = struct with fields:
elapsedtime: 24.6666
funccount: 200
constrviolation: -0.0949
ineq: [-0.1458 -0.0949 -0.6416]
rngstate: [1x1 struct]
message: 'surrogateopt stopped because it exceeded the function evaluation limit set

trials = struct with fields:
X: [200x2 double]
Ineq: [200x3 double]

Check the feasibility at the returned solution x.
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disp(output.ineq)
-0.1458 -0.0949 -0.6416

Equivalently, evaluate the function objconstr at the returned solution x.
disp(objconstr(x).Ineq)
-0.1458 -0.0949 -0.6416

Equivalently, examine the Ineq field in the trials structure for the solution x. First, find the index
of x in the trials.X field.

indx = ismember(trials.X,x, 'rows');
disp(trials.Ineq(indx,:))

-0.1458 -0.0949 -0.64106
All constraint function values are negative, indicating that the point x is feasible.

View the feasible points evaluated by surrogateopt.

opts = optimoptions("surrogateopt");

indx = max(trials.Ineq,[],2) <= opts.ConstraintTolerance; % Indices of feasible points
figure(h);

hold on

plot(trials.X(indx,1),trials.X(indx,2),"'*")

xlim([1 21)

ylim([-3.5 -2.5])

hold off
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This code creates the objconstr helper function.

function f = objconstr(x)

c(:,1) = (x(:,2) + x(:,1).72).72 + 0.1*x(:,2).72 - 1;
c(:,2) = x(:,2) - exp(-x(:,1)) + 3;

c(:,3) = x(:,2) - x(:,1) + 4;

f.Ineq = c;

end

See Also

surrogateopt

More About

. “Solve Nonlinear Feasibility Problem, Problem-Based”

. “Investigate Linear Infeasibilities”
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Solve Nonlinear Problem with Integer and Nonlinear
Constraints

The surrogateopt solver accepts both integer constraints and nonlinear constraints. Compare the
solution of a nonlinear problem both with and without integer constraints. The integer constraints
cause the solution to lie on a reasonably fine grid.

Objective and Constraint Functions

The objective function is

£00 = log(1 +3(x2 = (3§ = 1)) + (x1 - 4/3)?).
This objective function is nonnegative, and takes its minimum value of 0 at the point
x = [4/3,(4/3)% - 4/3] = [1.3333, 1.0370].
The problem has two nonlinear constraint functions.
x} < 5sinh(xy/5),
x4 < 5tanh(x;/5) + 1.
Plot the feasible region for the nonlinear constraints.
[X,Y] = meshgrid(-2:.01:3);

Z = (5*%sinh(Y./5) >= X."™4);
% Z=1 where the first constraint is satisfied, Z=0 otherwise

Z = Z+ 2*(5*tanh(X./5) >=Y."2 - 1);

% Z=2 where the second constraint is satisfied
% Z=3 where both constraints are satisfied
surf(X,Y,Z, 'LineStyle', 'none');

fig = gcf;

fig.Color = 'w'; % white background

view(0,90)

xlabel('x 1")
ylabel('x 2")
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The yellow region shows where both constraints are satisfied.

surrogateopt requires that the objective and constraint functions are part of the same function,
one that returns a structure. The objective function is in the Fval field of the structure, and the
constraints are in the Ineq field. These fields are the output of the objconstr function at the end of
this example on page 10-0

Scale Integer Constraints to Lie on Fine Grid

Set the problem to have integer constraints in both variables, x(1) and x(2).

intcon = [1 2];

Scale the problem so that the variables are scaled by s = 1/10, where s multiplies the variables.

S
1:

0.1;
@(x)objconstr(x,s);

For this scaling to be effective, you need to scale the bounds by 1/s. Set the unscaled bounds to
—2 = x; < 3 and scale each by 1/s.

b
ub

[-2,-2]/s;
[3,31/s;

By using the scaling s, the problem effectively has spacing of s in each component x (1) and x(2).
Plot the integer points as a grid with spacing s.
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hold on

grid on

ax = gca;

sp = -2:5:3;
ax.XTick = sp;
ax.YTick = sp;
ax.Layer = 'top';
ax.GridAlpha = 1/2;
ax.XTickLabel '
ax.YTickLabel '
xlabel('x 1")
ylabel('x 2")

hold off

Solve Scaled Problem

Set options to use tighter constraints than the default, and to use the surrogateoptplot plot
function.

opts = optimoptions('surrogateopt', 'PlotFcn',"surrogateoptplot”,"ConstraintTolerance",le-6);
Call surrogateopt to solve the problem.

rng default % For reproducibility
[sol, fval,eflag,outpt] = surrogateopt(f,lb,ub,intcon,opts)
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Best: 0.863447 Incumbent: 1.83438 Current: 2.18897
Br I |
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Number of Function Evaluations

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = 1Ix2

5 1

fval = 0.8634
0

eflag

struct with fields:
elapsedtime: 85.6097
funccount: 200
constrviolation: -0.0375
ineq: [-0.0375 -1.4883]
rngstate: [1x1 struct]
message: 'surrogateopt stopped because it exceeded the function evaluation limit set

outpt

Plot the solution as a red circle on the figure. Notice that the objective function value is
approximately 0.86.

figure(fig);

hold on
plot3(sol(1l)*s,sol(2)*s,5,'ro")
hold off
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Compare to Solution Without Integer Constraints

Compare the solution with integer constraints to the solution without integer constraints.

[sol2,fval2,eflag2,outpt2] = surrogateopt(f,lb,ub,[],opts)
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Best: 0.815247 Incumbent: 0.815358 Current: 0.815403

E —
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o - 3 Best
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Number of Function Evaluations

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol2 = 1x2

4.3928 0.3723

fval2 = 0.8152
eflag2 = 0

outpt2 = struct with fields:
elapsedtime: 45.7570
funccount: 200
constrviolation: 4.7234e-07
ineq: [4.7234e-07 -1.4368]
rngstate: [1x1 struct]
message: 'surrogateopt stopped because it exceeded the function evaluation limit set

Here, the objective function value is approximately 0.815. The integer constraints increase the
objective function value by less than 10%. Plot the new solution along with the previous integer
solution. Zoom in to see the solution points more clearly.

figure(fig)

hold on
plot3(sol2(1l)*s,sol2(2)*s,5, 'k*', 'MarkerSize',12)
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xlim([0 171)
ylim([-1/2 1/2])
hold off

Helper Function

This code creates the objconstr helper function. This function scales the variable x by the factor s,
returns the objective function value in the Fval field of the F structure, and returns the nonlinear
constraints in the Ineq field of the F structure.

function F = objconstr(x,s)

X = x*s;

fun = log(1l + 3*(x(2) - (x(1)"3 - x(1)))"2 + (x(1) - 4/3)"2);
cl = x(1)"4 - 5*sinh(x(2)/5);

c2 = x(2)"2 - 5*tanh(x(1)/5) - 1;

c = [cl c2];

F.Fval = fun;

F.Ineq = c;

end

See Also
surrogateopt

More About
. “Mixed Integer ga Optimization” on page 7-37
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Improve surrogateopt Solution or Process

10-90

surrogateopt Stalls

When you have both linear constraints and integer constraints, surrogateopt can fail to find any
feasible points or enough distinct feasible points to create a surrogate. In these cases, the solver exits
with exit flag -2 (no feasible point found) or 3 (too few feasible points). For details on exit flag -2, see
“No Feasible Point Found” on page 10-90.

Exit flag 3 can occur in two different ways:

* There were too few feasible points to construct an initial surrogate.
» There were too few feasible points to construct a surrogate after a surrogate reset.

You can see which case applies by using the surrogateoptplot plot function.

options = optimoptions('surrogateopt', 'PlotFcn', 'surrogateoptplot');
[sol,fval,exitflag] = surrogateopt(arguments,options);

After each surrogate reset, surrogateopt requires more feasible points to construct the next
surrogate. When there are integer constraints, surrogateopt can exhaust the set of feasible points,
or can fail to find new feasible points even when some remain

If surrogateopt has performed at least one reset, then it has successfully searched for a solution.
In this case, you might have the solution to the problem.

If surrogateopt was unable to create an initial surrogate, or if surrogateopt reset and you want
to try to find another solution, perform the following steps.

1 Relax some constraints.

* Change some linear constraints to nonlinear, which causes the solver to not insist on strict
feasibility. This can give surrogateopt more feasible points to use in constructing
surrogates.

* Relax some linear inequality constraints by choosing larger values for the b vector. You can
relax all b values at once by adding a scalar:
b=>b+5;

2 Similarly, if your bound constraints are causing the problem to have too few feasible points, and
if it makes sense for your problem, relax the bounds. Take larger upper bounds or smaller lower
bounds or both. You can relax all bounds at once by adding or subtracting a scalar.

ub
1b

ub + 3;
b - 1;

No Feasible Point Found

When surrogateopt cannot find a point that is feasible with respect to bounds, integer constraints,
and linear constraints, it returns exit flag -2. In this case, the problem is truly infeasible.

However, the solver can also return exit flag -2 when it cannot locate a point that is feasible with
respect to nonlinear inequality constraints. This can sometimes occur even when feasible points exist.
To proceed, follow the steps in “Converged to an Infeasible Point”.



Improve surrogateopt Solution or Process

Solution Might Not Be Optimal

Usually, surrogateopt stops when it runs out of function evaluations. This means that
surrogateopt does not stop because it reaches an optimal solution. However, when a surrogate
reset occurs, the current solution is usually near a local optimum.

How can you evaluate the quality of a solution? Generally, this is difficult to do. Here are some steps
for investigating a solution to help determine its local quality. However, there is no procedure that
guarantees that a point is a global solution. See “Can You Certify That a Solution Is Global?” on page
4-41,

If the problem has no integer constraints, look at nearby points. To do so, call patternsearch on
the returned solution. Set the InitialMeshSize option to the size of the search step you want to
use. To keep patternsearch from taking too much time, set the MaxIterations option to 1 and
the UseCompletePoll option to true:

options = optimoptions('patternsearch',...
'InitialMeshSize',1le-3, ...
'MaxIterations',1, 'UseCompletePoll’, true);

If your problem has nonlinear constraints, first convert the constraints to the form that
patternsearch accepts using “Convert Nonlinear Constraints Between surrogateopt Form and
Other Solver Forms” on page 10-74.

If the problem has no integer constraints, try running fmincon starting from the solution. Again,
if your problem has nonlinear constraints, first convert the constraints to the form that fmincon
accepts using “Convert Nonlinear Constraints Between surrogateopt Form and Other Solver
Forms” on page 10-74. If the problem uses a simulation or ODE solver, you might need to set
larger finite difference options for fmincon. See “Optimizing a Simulation or Ordinary Differential
Equation”.

If the problem has integer constraints, then there is little to do except to try to run
surrogateopt for more function evaluations. Do so most efficiently by using a checkpoint file.
See “Work with Checkpoint Files” on page 10-56. If you did not use a checkpoint file, you can also
give a set of initial points using the InitialPoints option.

See Also
surrogateopt

More About

“Surrogate Optimization”
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Vectorized Surrogate Optimization for Custom Parallel
Simulation

10-92

This example shows how to use the surrogateopt UseVectorized option to perform custom
parallel optimization. You can use this technique when you cannot use the UseParallel option
successfully. For example, the UseParallel option might not apply to a Simulink® simulation that
requires parsim for parallel evaluation. Optimizing a vectorized parallel simulation involves
considerable overhead, so this technique is most useful for time-consuming simulations.

The parallel strategy in this example is to break up the optimization into chunks of size N, where N is
the number of parallel workers. The example prepares N sets of parameters in a
Simulink.SimulationInput vector, and then calls parsim on the vector. When all N simulations
are complete, surrogateopt updates the surrogate and evaluates another N sets of parameters.

Model System

This example attempts to fit the Lorenz dynamical system to uniform circular motion over a short
time interval. The Lorenz system and its uniform circular approximation are described in the example
“Fit an Ordinary Differential Equation (ODE)”.

The Lorenz_system. slx Simulink model implements the Lorenz ODE system. This model is
included when you run this example using the live script.

The fitlorenzfn helper function at the end of this example on page 10-0  calculates points from
uniform circular motion. Set circular motion parameters from the example “Fit an Ordinary
Differential Equation (ODE)” that match the Lorenz dynamics reasonably well.
zeros(8,1);

1.2814;

-1.4930;

24.9763;

14.1870;

0.0545;

= [13.8061;1.5475;25.3616];

~ 1 nmnunmo

:8

This system does not take much time to simulate, so the parallel time for the optimization is not less
than the time to optimize serially. The purpose of this example is to show how to create a vectorized
parallel simulation, not to provide a specific example that runs better in parallel.

Objective Function

The objective function is to minimize the sum of squares of the difference between the Lorenz system
and the uniform circular motion over a set of times from 0 through 1/10. For times xdata, the
objective function is

objective = sum((fitlorenzfn(x,xdata) - lorenz(xdata)).”2) - (F(1) + F(end))/2

Here, lorenz(xdata) represents the 3-D evolution of the Lorenz system at times xdata, and F
represents the vector of squared distances between corresponding points in the circular and Lorenz
systems. The objective subtracts half of the values at the endpoints to best approximate an integral.

Consider the uniform circular motion as the curve to match, and modify the Lorenz parameters in the
simulation to minimize the objective function.
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Calculate Lorenz System for Specific Parameters

Calculate and plot the Lorenz system for Lorenz's original parameters.

model = 'Lorenz system';

open_system(model);

in = Simulink.SimulationInput(model);

% params [X0,Y0,Z0,Sigma,Beta,Rho]

params = [10,20,10,10, 8/3, 28]1; % The original parameters Sigma, Beta, Rho
in = setparams(in,model,params);

out = sim(in);

yout = out.yout;

h = figure;
plot3(yout{1l}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data, 'bx"');
view([-30 -701])
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Calculate Uniform Circular Motion

Calculate the uniform circular motion for the x parameters given previously over the time interval in
the Lorenz calculation, and plot the result along with the Lorenz plot.

tlist = yout{l}.Values.Time;

M = fitlorenzfn(x,tlist);

hold on
plot3(M(:,1),M(:,2),M(:,3), " "kx")
hold off

10-93



10 Surrogate Optimization
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The obj fun helper function at the end of this example on page 10-0 calculates the sum of squares
difference between the Lorenz system and the uniform circular motion. The objective is to minimize
this sum of squares.

ssq = objfun(in,params,M,model)
ssq = 26.9975

Fit Lorenz System in Parallel

To optimize the fit, use surrogateopt to modify the parameters of the Simulink model. The
parobjfun helper function at the end of this example on page 10-0  accepts a matrix of
parameters, where each row of the matrix represents one set of parameters. The function calls the
setparams helper function at the end of this example on page 10-0 to set parameters for a
Simulink.SimulationInput vector. The parobjfun function then calls parsim to evaluate the
model on the parameters in parallel.

Open a parallel pool and specify N as the number of workers in the pool.

pool = gcp('nocreate'); % Check whether a parallel pool exists
if isempty(pool) % If not, create one

pool = parpool;
end

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

N = pool.NumWorkers
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N==26

Set the BatchUpdateInterval option to N and set the UseVectorized option to true. These
settings cause surrogateopt to pass N points at a time to the objective function. Set the initial point
to the parameters used earlier, because they give a reasonably good fit to the uniform circular
motion. Set the MaxFunctionEvaluations option to 600, which is an integer multiple of the 6
workers on the computer used for this example.

options = optimoptions('surrogateopt', 'BatchUpdateInterval',N,...
'UseVectorized', true, 'MaxFunctionEvaluations', 600, ...
'InitialPoints',params);

Set bounds of 20% above and below the current parameters.

b
ub

0.8*params;
1.2*params;

For added speed, set the simulation to use fast restart.

set param(model, 'FastRestart','on');

Create a vector of N simulation inputs for the objective function.

simIn(1:N) = Simulink.SimulationInput(model);

For reproducibility, set the random stream.

rng(100)

Optimize the objective in a vectorized parallel manner by calling parobj fun.

tic
[fittedparams, fval] = surrogateopt(@(params)parobjfun(simIn,params,M,model),lb,ub,options)
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Best Function Value: 23.6361

| - Best function value

26.5T

[
bl
tn
T
P

f

Function value

245671 -

24

/

235 i i i i i ]
0 100 200 300 400 500 600

Iteration

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

fittedparams = 1Ix6

10.5627  19.8962 9.8420 8.9616 2.5723  27.9687

fval = 23.6361

paralleltime = toc

paralleltime 457.9271

The objective function value improves (decreases). Display the original and improved values.
disp([ssq,fval])
26.9975 23.63601
Plot the fitted points.
figure(h)
hold on
in = setparams(in,model, fittedparams);
out = sim(in);

yout = out.yout;
plot3(yout{l}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Data, 'rx');
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legend('Unfitted Lorenz', 'Uniform Motion', 'Fitted Lorenz')
hold off

*

Unfitted Lorenz
Uniform Mation
Fitted Lorenz

4

4

a0 28

To close the model, you must first disable fast restart.

set_param(model, 'FastRestart', 'off');
close system(model)

Conclusion

When you cannot use the UseParallel option successfully, you can optimize a simulation in parallel
by setting the surrogateopt UseVectorized option to true and the BatchUpdateInterval
option to a multiple of the number of parallel workers. This process speeds up the parallel
optimization, but involves overhead, so is best suited for time-consuming simulations.

Helper Functions

The following code creates the fitlorenzfn helper function.

function f = fitlorenzfn(x,xdata)

R = x(3);

V = x(4);

t0 = x(5);

delta = x(6:8);

f = zeros(length(xdata),3);

f(:,3) = R*sin(theta(1l))*sin(V*(xdata - t0)) + delta(3);
f(:,1) = R*¥cos(V*(xdata - t0))*cos(theta(2))
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- R*¥sin(V*(xdata - t0))*cos(theta(l))*sin(theta(2)) + delta(l);
f(:,2) = R¥sin(V*(xdata - t0))*cos(theta(l))*cos(theta(2))

- R*cos(V*(xdata - t0))*sin(theta(2)) + delta(2);
end

The following code creates the obj fun helper function.

function f = objfun(in,params,M,model)
in = setparams(in,model,params);
out = sim(in);

yout = out.yout;

vals = [yout{l}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Datal;
f = sum((M - vals).”2,2);

f = sum(f) - (f(1l) + f(end))/2;

end

The following code creates the parobj fun helper function.

function f = parobjfun(simIn,params,M, model)
N = size(params,l);
f = zeros(N,1);
for i = 1:N
simIn(i) = setparams(simIn(i),model,params(i,:));

end
simOut = parsim(simIn, 'ShowProgress','off'); % Suppress output
for i = 1:N
yout = simOut(i).yout;
vals = [yout{l}.Values.Data,yout{2}.Values.Data,yout{3}.Values.Datal;
g = sum((M - vals).”2,2);
f(i) = sum(g) - (g(1l) + g(end))/2;
end
end

The following code creates the setparams helper function.

function pp = setparams(in,model,params)
% parameters [X0,Y0,Z0,Sigma,Beta,Rho]

pp = in.setVariable('X0',params(1l), 'Workspace',model);

pp = pp.setVariable('YQ',params(2), 'Workspace',model);

pp = pp.setVariable('Z0',params(3), 'Workspace',model);

pp = pp.setVariable('Sigma',params(4), 'Workspace',model);
pp = pp.setVariable('Beta',params(5), 'Workspace',model);
pp = pp.setVariable('Rho',params(6), 'Workspace',model);
end

See Also

surrogateopt | parsim

Related Examples
. “Surrogate Optimization”
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* “Optimize Multidimensional Function Using surrogateopt, Problem-Based” on page 11-2
» “Solve Feasibility Problem Using surrogateopt, Problem-Based” on page 11-6
* “Mixed-Integer Surrogate Optimization, Problem-Based” on page 11-11
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Optimize Multidimensional Function Using surrogateopt,
Problem-Based

11-2

This example shows how to minimize a multidimensional function using surrogate optimization in the
problem-based approach. The function to minimize, multirosenbrock(x), appears at the end of
this example on page 11-0 . The multirosenbrock function has a single local minimum of 0 at the
point [1,1,...,1]. The function is designed to be challenging for solvers to minimize.

Note: The code for the multirosenbrock helper function is provided at the end of this example on
page 11-0 . Make sure the code is included at the end of your script or in a file on the path.

Create a 4-D optimization variable x. The multirosenbrock function expects the variable to be a
row vector, so specify x as a 4-element row vector.

x = optimvar("x",1,4);

The surrogateopt solver requires finite bounds on all problem variables. Specify lower bounds of -3
and upper bounds of 3. When you specify scalar bounds, they apply to all problem variables.

X.LowerBound
x.UpperBound

’

3;

To use multirosenbrock as the objective function, convert the function to an optimization
expression using fcn2optimexpr.

fun = fcn2optimexpr(@multirosenbrock,x);

Create an optimization problem with the objective function multirosenbrock.
prob = optimproblem("Objective", fun);

Solve the problem, specifying the surrogateopt solver.

rng default % For reproducibility

[sol,fval] = solve(prob,"Solver","surrogateopt")

Solving problem using surrogateopt.



Optimize Multidimensional Function Using surrogateopt, Problem-Based

<104 Best Function Value: 1.58773
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = struct with fields:
X: [0.0900 0.0120 0.1300 0.0136]
fval = 1.5877

Attempt to Improve Solution

The returned solution is not good, because the objective function value is not very close to 0. Try to
improve the solution by running surrogateopt for more evaluations. Use the previous solution as a
start point.

options = optimoptions("surrogateopt","MaxFunctionEvaluations",1000);
[sol2,fval2] = solve(prob,sol,"Solver","surrogateopt","Options",options)

Solving problem using surrogateopt.
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«10% Best Function Value: 0.0961091
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol2 = struct with fields:
x: [0.8613 0.7429 0.7247 0.5220]

fval2 = 0.0961

This time, the solver reaches a good solution.

Helper Function

This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)

This function is a multidimensional generalization of Rosenbrock's

function. It operates in a vectorized manner, assuming that x is a matrix
whose rows are the individuals.

o° o o°

o°

Copyright 2014 by The MathWorks, Inc.
N = size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
error('Input rows must have an even number of elements')
end

odds = 1:2:N-1;
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evens = 2:2:N;

F = zeros(size(x));

F(:,0dds) = 1-x(:,odds);

F(:,evens) = 10*(x(:,evens)-x(:,o0dds)."2);
F = sum(F."2,2);

end

See Also
surrogateopt | fcn2optimexpr | solve

Related Examples
. “Surrogate Optimization”
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Solve Feasibility Problem Using surrogateopt, Problem-Based

11-6

Some problems require you to find a point that satisfies all constraints, with no objective function to
minimize. For example, suppose that you have the following constraints:

Y+x3)%+0.1y2 <1
y<exp(-x)—-3
ysx-4.

Do any points (x, y) satisfy the constraints? To answer this question, you need to evaluate the
expressions at a variety of points. The surrogateopt solver does not require you to provide initial
points, and it searches a wide set of points. So, surrogateopt works well for feasibility problems.

To visualize the constraints, see Visualize Constraints on page 11-0 . For a solver-based approach to
this problem, see “Solve Feasibility Problem” on page 10-78.

Note: This example uses two helper functions, outfun and evaluateExpr. The code for each
function is provided at the end of this example on page 11-0 . Make sure the code for each function
is included at the end of your script or in a file on the path.

Set Up Feasibility Problem

For the problem-based approach, create optimization variables x and y, and create expressions for
the listed constraints. To use the surrogateopt solver, you must set finite bounds for all variables.
Set lower bounds of -10 and upper bounds of 10.

x = optimvar("x","LowerBound",-10,"UpperBound",10);
y = optimvar("y","LowerBound",-10,"UpperBound",10);

consl = (y + x"2)72 + 0.1*y"2 <= 1;
cons2 = y <= exp(-x) - 3;
cons3 =y <= x - 4;

Create an optimization problem and include the constraints in the problem.

prob = optimproblem("Constraints",[consl cons2 cons3]);

The problem has no objective function. Internally, the solver sets the objective function value to 0 for
every point.

Solve Problem

Solve the problem using surrogateopt.

rng(l) % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt")

Solving problem using surrogateopt.
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Best Function Value: 0
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = struct with fields:
x: 1.7917
y: -3.1505

fval = 0

The first several evaluated points are infeasible, as indicated by the color red in the plot. After about
90 evaluations, the solver finds a feasible point, plotted in blue.

Check the feasibility at the returned solution.
infeasibility(consl,sol)

ans = 0

infeasibility(cons2,sol)

ans = 0

infeasibility(cons3,sol)

ans = 0

All infeasibilities are zero, indicating that the point sol is feasible.
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Stop Solver at First Feasible Point

To reach a solution faster, create an output function (see “Output Function” on page 15-52) that
stops the solver whenever it reaches a feasible point. The outfun helper function at the end of this
example on page 11-0  stops the solver when it reaches a point with no constraint violation.

Solve the problem using the outfun output function.

opts = optimoptions("surrogateopt","OutputFcn",@outfun);
rng(l) % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt","Options",opts)

Solving problem using surrogateopt.

Best Function Value: 0

. Best function value (infeasible)
0.8 +  Best function value
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Iteration

Optimization stopped by a plot function or output function.
sol = struct with fields:
x: 1.7917
y: -3.1505
fval = 0
This time, the solver stops earlier than before.

Visualize Constraints

To visualize the constraints, plot the points where each constraint function is zero by using
fimplicit. The fimplicit function passes numeric values to its functions, whereas the evaluate
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function requires a structure. To tie these functions together, use the evaluateExpr helper function,
which appears at the end of this example on page 11-0 . This function simply puts passed values
into a structure with the appropriate names.

Avoid a warning that occurs because the evaluateExpr function does not work on vectorized inputs.

s = warning('off"', '"MATLAB: fplot:NotVectorized');
figure

ccl = (y + x™2)72 + 0.1*%y"2 - 1;
fimplicit(@(a,b)evaluateExpr(ccl,a,b),[-2 2 -4 2],'r")
hold on

cc2 =y - exp(-x) + 3;
fimplicit(@(a,b)evaluateExpr(cc2,a,b),[-2 2 -4 2],'k")
ce3 =y -x+4;
fimplicit(@(x,y)evaluateExpr(cc3,x,y),[-2 2 -4 2],'b")
hold off

warning(s);

The feasible region is inside the red outline and below the black and blue lines. The feasible region is
at the lower right of the red outline.

Helper Functions
This code creates the outfun helper function.

function stop = outfun(~,optimValues,state)
stop = false;
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switch state
case 'iter'
if optimValues.currentConstrviolation <= 0
stop = true;
end
end
end

This code creates the evaluateExpr helper function.

function p = evaluateExpr(expr,Xx,y)
pt.x = X;

pt.y =vy;
p = evaluate(expr,pt);
end

See Also
solve | infeasibility | surrogateopt

Related Examples
. “Solve Feasibility Problem” on page 10-78
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Mixed-Integer Surrogate Optimization, Problem-Based

This example shows how to solve an optimization problem that involves integer variables. In this
example, find the point x that minimizes the multirosenbrock function over integer-valued
arguments ranging from -3 to 6 in 10 dimensions. The multirosenbrock function is a poorly scaled
function that is difficult to optimize. Its minimum value is 0, which is attained at the point
[1,1,...,1]. The code for the multirosenbrock function appears at the end of this example on
page 11-0

Create a 10-D row vector variable x of type integer with bounds -3 to 6. When you specify scalar
bounds, the bounds apply to all variable components.

x = optimvar("x",1,10,"LowerBound", -3, "UpperBound",6,"Type","integer");

To use multirosenbrock as the objective function, convert the function to an optimization
expression using fcn2optimexpr.

fun = fcn2optimexpr(@multirosenbrock,x);

Create an optimization problem with the objective function multirosenbrock.
prob = optimproblem("Objective", fun);

Set the maximum number of function evaluations to 200.

opts = optimoptions("surrogateopt", "MaxFunctionEvaluations",200);
Solve the problem.

rng(l, 'twister') % For reproducibility
[sol,fval] = solve(prob,"Solver","surrogateopt","Options",opts)

Solving problem using surrogateopt.
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11-12
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = struct with fields:
x: [1111111111]
fval = 0
In this case, surrogateopt reaches the correct solution.
Mixed-Integer Problem

Suppose that only the first six variables are integer-valued. To reformulate the problem, create a 6-D
integer variable xint and a 4-D continuous variable xcont.

xint = optimvar("xint", 1,6, "LowerBound",-3,"UpperBound",6,"Type","integer");
xcont = optimvar("xcont",1,4,"LowerBound", -3, "UpperBound",6);

Convert multirosenbrock to an optimization expression using the input [xint xcont].
fun2 = fcn2optimexpr(@multirosenbrock, [xint xcont]);

Create and solve the problem.

prob2 = optimproblem("Objective", fun2);

rng(l, 'twister') % For reproducibility
[sol2,fval2] = solve(prob2,"Solver","surrogateopt","Options",opts)
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Solving problem using surrogateopt.
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surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol2 = struct with fields:
xcont: [1.0508 1.1394 1.0671 1.1383]
xint: [1 1111 1]

fval2 = 0.1310

This time the integer variables reach the correct solution, and the continuous variables are near the
solution, but are not completely accurate.

Helper Function
This code creates the multirosenbrock helper function.

function F = multirosenbrock(x)
This function is a multidimensional generalization of Rosenbrock's
function. It operates in a vectorized manner, assuming that x is a matrix
whose rows are the individuals.
Copyright 2014 by The MathWorks, Inc.
= size(x,2); % assumes x is a row vector or 2-D matrix
if mod(N,2) % if N is odd
error('Input rows must have an even number of elements')
end

= 0° o° o° o°
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é X));

1-x(:,odds);
10*(x(:,evens)-x(:,o0dds)."2);
2

See Also
solve | surrogateopt

Related Examples

. “Mixed-Integer Surrogate Optimization” on page 10-62
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* “What Is Simulated Annealing?” on page 12-2

* “Optimize Function Using simulannealbnd, Problem-Based” on page 12-3

* “Minimize Function with Many Local Minima” on page 12-5
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* “Minimization Using Simulated Annealing Algorithm” on page 12-17

* “Simulated Annealing Options” on page 12-20

* “Multiprocessor Scheduling Using Simulated Annealing with a Custom Data Type” on page 12-26



12 Using Simulated Annealing

What Is Simulated Annealing?

12-2

Simulated annealing is a method for solving unconstrained and bound-constrained optimization
problems. The method models the physical process of heating a material and then slowly lowering the
temperature to decrease defects, thus minimizing the system energy.

At each iteration of the simulated annealing algorithm, a new point is randomly generated. The
distance of the new point from the current point, or the extent of the search, is based on a probability
distribution with a scale proportional to the temperature. The algorithm accepts all new points that
lower the objective, but also, with a certain probability, points that raise the objective. By accepting
points that raise the objective, the algorithm avoids being trapped in local minima, and is able to
explore globally for more possible solutions. An annealing schedule is selected to systematically
decrease the temperature as the algorithm proceeds. As the temperature decreases, the algorithm
reduces the extent of its search to converge to a minimum.

See Also

More About

. “Simulated Annealing Terminology” on page 12-11

. “How Simulated Annealing Works” on page 12-13

. “Minimize Function with Many Local Minima” on page 12-5

. “Minimization Using Simulated Annealing Algorithm” on page 12-17
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Optimize Function Using simulannealbnd, Problem-Based

This example shows how to minimize a function using simulated annealing in the problem-based
approach when the objective is a function file, possibly of unknown content (a "black box" function).
The function to minimize, dejong5fcn(x), is included with Global Optimization Toolbox. Plot the
function.

dejong5fcn

Create a 2-D optimization variable x. The dejong5fcn function expects the variable to be a row
vector, so specify X as a 2-element row vector.

x = optimvar("x",1,2);

To use dejong5fcn as the objective function, convert the function to an optimization expression
using fcn2optimexpr.

fun = fcn2optimexpr(@dejong5fcn,x);

Create an optimization problem with the objective function fun.

prob = optimproblem("Objective", fun);

Set variable bounds from -50 to 50 in all components. When you specify scalar bounds, the software

expands the bounds to all variables.
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x.LowerBound
x.UpperBound

-50;
50;

Set a pseudorandom initial point within the bounds. The initial point is a structure with field x.

rng default % For reproducibility
x0.x = x.LowerBound + rand(size(x.LowerBound)).*x.UpperBound;

Solve the problem, specifying the simulannealbnd solver.

[sol,fval] = solve(prob,x0,"Solver","simulannealbnd")

Solving problem using simulannealbnd.
Optimization terminated: change in best function value less than options.FunctionTolerance.

sol = struct with fields:
[-32.0371 -31.8792]

fval = 0.9980

See Also
simulannealbnd | fcn2optimexpr | solve

Related Examples
. “Simulated Annealing”
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Minimize Function with Many Local Minima

In this section...

“De Jong's Fifth Function” on page 12-5

“Minimize at the Command Line” on page 12-6

“Minimize Using the Optimize Live Editor Task” on page 12-6

De Jong's Fifth Function

This example shows how to find a local minimum of a function using simulated annealing. The
example presents two approaches for minimizing: working at the command line and using the

Optimize Live Editor task.

De Jong's fifth function is a two-dimensional function with many (25) local minima. In the following
plot, it is unclear which of these local minima is the global minimum.

dejong5fcn

Many standard optimization algorithms become stuck in local minima. Because the simulated
annealing algorithm performs a wide random search, the chance of being trapped in a local minimum

is decreased.
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Note:Because simulated annealing uses random number generators, each time you run this
algorithm you can get different results. See “Reproduce Your Results” on page 12-16 for more
information.

Minimize at the Command Line

To run the simulated annealing algorithm without constraints, call simulannealbnd at the command
line using the objective function in dejong5fcn.m, referenced by the anonymous function
@dejong5fcn in the following code.

rng(10, 'twister') % for reproducibility
fun = @dejong5fcn;
[x,fval] = simulannealbnd(fun,[0 0O])

Optimization terminated: change in best function value less than options.FunctionTolerance.

X =
-16.1292 -15.8214

fval =
6.9034

In the results:

* X is the final point returned by the algorithm.
» fval is the objective function value at the final point.

Minimize Using the Optimize Live Editor Task

You can also run the minimization using the Optimize Live Editor task, which provides a visual
approach.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

HOME .

2| Lm
W NENL}

ot |Live Script

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.



Minimize Function with Many Local Minima
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Optimize O 7

Minimize a function with or without constraints

= Specify problem type

. f .
-‘ 1_0 [ AW l|l II _Il ;]
Objective ; = :
Linear Quadratic Least squares Menlinear Monsmooth

Select an objective type to see example functions

|D Unconstrained | ‘E Lower bounds | ‘E Upper bounds | ‘ Linear inequality

Constraints || . , 1] 1 [ . 1]
|Z Linear equality | ‘ Second-order cnne| ‘ Monlinear | ‘ Intager

Select constraint types to see example formulas

Solver | fmincon - Constrained nonlinear minimization (recommended} \ e

= Select problem data

Objective function | From file v | |:E5rowse...:| |:New...:| (7]

Initial point (x0) | select ¥ |

} Specify solver options

~ Display progress

Text display | Final output v |
Plot [ | Current paint [ |Evaluation count | | Objective value and feasibility | | Objective value
| |Max constraint violation | | Step size [ | Optimality measure

3 For use in entering problem data, insert a new section by clicking the Section Break button on
the Insert tab. New sections appear above and below the task.

4 In the new section above the task, enter the following code to define the initial point and the
objective function.

x0 = [0 0];
fun = @dejong5fcn;

5 To place these variables into the workspace, run the section by pressing Ctrl+Enter.

6 In the Specify problem type section of the task, click the Objective > Nonlinear button.

7 Select Solver > simulannealbnd - Simulated annealing algorithm.

8 In the Select problem data section of the task, select Objective function > Function handle
and then choose fun.

9 Select Initial point (x0) > x0.
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Solver simulannealbnd - Simulated annealing algorithm
Select problem data
Objective function | Function handle fun L 9

Initial paoint (=0) %0 A4

10 In the Display progress section of the task, select the Best value plot.

11 To run the solver, click the options button : at the top right of the task window, and select Run
Section. The plot appears in a separate figure window and in the task output area. Note that
your plot might be different from the one shown, because simulannealbnd is a stochastic
algorithm.

Best Function Value: 10.7632
13r1

12.57T

-
M2
T

Function value
e
e
n
T

"r

10.5 ' ' '
0 200 400 600 800 1000 1200 1400

Iteration

12 To see the solution and best objective function value, look at the top of the task.

Optimize

solution|,| objectiveValue| = Minimize fun using simulannealbnd solver

The Optimize Live Editor task returns variables named solution and objectiveValue to the
workspace.
13 To view the values these variables, enter the following code in the section below the task.

disp(solution)
disp(objectiveValue)
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14 Run the section by pressing Ctrl+Enter.
disp(solution)
-32.0285 -0.1280
disp(objectiveValue)

10.7632

Both the Optimize Live Editor task and the command line allow you to formulate and solve problems,
and they give identical results. The command line is more streamlined, but provides less help for
choosing a solver, setting up the problem, and choosing options such as plot functions. You can also
start a problem using Optimize, and then generate code for command line use, as in “Solve a
Constrained Nonlinear Problem, Solver-Based”.

See Also
simulannealbnd

More About

. “Minimization Using Simulated Annealing Algorithm” on page 12-17
. “Add Interactive Tasks to a Live Script”
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Simulated Annealing Terminology

In this section...

“Objective Function” on page 12-11
“Temperature” on page 12-11
“Annealing Parameter” on page 12-11
“Reannealing” on page 12-11

Objective Function

The objective function is the function you want to optimize. Global Optimization Toolbox algorithms
attempt to find the minimum of the objective function. Write the objective function as a file or
anonymous function, and pass it to the solver as a function handle. For more information, see
“Compute Objective Functions” on page 2-2 and “Create Function Handle”.

Temperature

The temperature is a parameter in simulated annealing that affects two aspects of the algorithm:

* The distance of a trial point from the current point (See “Outline of the Algorithm” on page 12-
13, Step 1.)

» The probability of accepting a trial point with higher objective function value (See “Outline of the
Algorithm” on page 12-13, Step 2.)

Temperature can be a vector with different values for each component of the current point. Typically,
the initial temperature is a scalar.

Temperature decreases gradually as the algorithm proceeds. You can specify the initial temperature
as a positive scalar or vector in the InitialTemperature option. You can specify the temperature
as a function of iteration number as a function handle in the TemperatureFcn option. The
temperature is a function of the “Annealing Parameter” on page 12-11, which is a proxy for the
iteration number. The slower the rate of temperature decrease, the better the chances are of finding
an optimal solution, but the longer the run time. For a list of built-in temperature functions and the
syntax of a custom temperature function, see “Temperature Options” on page 15-58.

Annealing Parameter

The annealing parameter is a proxy for the iteration number. The algorithm can raise temperature by
setting the annealing parameter to a lower value than the current iteration. (See “Reannealing” on
page 12-11.) You can specify the temperature schedule as a function handle with the
TemperatureFcn option.

Reannealing

Annealing is the technique of closely controlling the temperature when cooling a material to ensure
that it reaches an optimal state. Reannealing raises the temperature after the algorithm accepts a
certain number of new points, and starts the search again at the higher temperature. Reannealing
avoids the algorithm getting caught at local minima. Specify the reannealing schedule with the
Reanneallnterval option.
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See Also
simulannealbnd

More About

. “What Is Simulated Annealing?” on page 12-2
. “How Simulated Annealing Works” on page 12-13
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How Simulated Annealing Works

In this section...

“Outline of the Algorithm” on page 12-13
“Stopping Conditions for the Algorithm” on page 12-14
“Bibliography” on page 12-15

Outline of the Algorithm

The simulated annealing algorithm performs the following steps:

1

The algorithm generates a random trial point. The algorithm chooses the distance of the trial
point from the current point by a probability distribution with a scale depending on the current
temperature. You set the trial point distance distribution as a function with the AnnealingFcn
option. Choices:

* @annealingfast (default) — Step length equals the current temperature, and direction is
uniformly random.

* @annealingboltz — Step length equals the square root of temperature, and direction is
uniformly random.

* @myfun — Custom annealing algorithm, myfun. For custom annealing function syntax, see
“Algorithm Settings” on page 15-59.

After generating the trial point, the algorithm shifts it, if necessary, to stay within bounds. The
algorithm shifts each infeasible component of the trial point to a value chosen uniformly at
random between the violated bound and the (feasible) value at the previous iteration.

The algorithm determines whether the new point is better or worse than the current point. If the
new point is better than the current point, it becomes the next point. If the new point is worse
than the current point, the algorithm can still make it the next point. The algorithm accepts a
worse point based on an acceptance function. Choose the acceptance function with the
AcceptanceFcn option. Choices:

* @acceptancesa (default) — Simulated annealing acceptance function. The probability of
acceptance is
1

1+ exp(ﬁm) '

where

A = new objective - old objective.
T, = initial temperature of component i
T = the current temperature.

Since both A and T are positive, the probability of acceptance is between 0 and 1/2. Smaller
temperature leads to smaller acceptance probability. Also, larger A leads to smaller
acceptance probability.

* @myfun — Custom acceptance function, myfun. For custom acceptance function syntax, see
“Algorithm Settings” on page 15-59.
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The algorithm systematically lowers the temperature, storing the best point found so far. The
TemperatureFcn option specifies the function the algorithm uses to update the temperature.
Let k denote the annealing parameter. (The annealing parameter is the same as the iteration
number until reannealing.) Options:

* @temperatureexp (default) — T = T, * 0.95"k.
* @temperaturefast —T=T,/k.
* @temperatureboltz — T =T,/ log(k).

* @myfun — Custom temperature function, myfun. For custom temperature function syntax,
see “Temperature Options” on page 15-58.

simulannealbnd reanneals after it accepts ReannealInterval points. Reannealing sets the
annealing parameters to lower values than the iteration number, thus raising the temperature in
each dimension. The annealing parameters depend on the values of estimated gradients of the
objective function in each dimension. The basic formula is

max(s;)
ki = log TT? J

Si

where

k; = annealing parameter for component i.

T, = initial temperature of component i.

T; = current temperature of component i.

s; = gradient of objective in direction i times difference of bounds in direction i.

simulannealbnd safeguards the annealing parameter values against Inf and other improper
values.

The algorithm stops when the average change in the objective function is small relative to
FunctionTolerance, or when it reaches any other stopping criterion. See “Stopping Conditions
for the Algorithm” on page 12-14.

For more information on the algorithm, see Ingber [1].

Stopping Conditions for the Algorithm

The simulated annealing algorithm uses the following conditions to determine when to stop:

FunctionTolerance — The algorithm runs until the average change in value of the objective
function in StallIterLim iterations is less than the value of FunctionTolerance. The default
value is 1e-6.

MaxIterations — The algorithm stops when the number of iterations exceeds this maximum
number of iterations. You can specify the maximum number of iterations as a positive integer or
Inf. The default value is Inf.

MaxFunctionEvaluations specifies the maximum number of evaluations of the objective
function. The algorithm stops if the number of function evaluations exceeds the value of
MaxFunctionEvaluations. The default value is 3000*numberofvariables.

MaxTime specifies the maximum time in seconds the algorithm runs before stopping. The default
value is Inf.
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* ObjectivelLimit — The algorithm stops when the best objective function value is less than the
value of ObjectivelLimit. The default value is - Inf.

Bibliography

[1] Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. Invited paper to a special issue of
the Polish Journal Control and Cybernetics on “Simulated Annealing Applied to Combinatorial
Optimization.” 1995. Available from https://www.ingber.com/asa96 lessons.ps.gz

See Also

simulannealbnd

More About

. “What Is Simulated Annealing?” on page 12-2

. “Simulated Annealing Terminology” on page 12-11

. “Minimize Function with Many Local Minima” on page 12-5

. “Minimization Using Simulated Annealing Algorithm” on page 12-17
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Reproduce Your Results

Because the simulated annealing algorithm is stochastic—that is, it makes random choices—you get
slightly different results each time you run it. The algorithm uses the default MATLAB pseudorandom
number stream. For more information about random number streams, see RandStream. Each time
the algorithm calls the stream, its state changes. So the next time the algorithm calls the stream, it
returns a different random number.

If you need to reproduce your results exactly, call simulannealbnd with the output argument. The
output structure contains the current random number generator state in the output.rngstate
field. Reset the state before running the function again.

For example, to reproduce the output of simulannealbnd applied to De Jong's fifth function, call
simulannealbnd with the syntax

rng (10, 'twister') % for reproducibility
[x,fval,exitflag,output] = simulannealbnd(@dejong5fcn,[0 0O]);

Suppose the results are
x, fval

X =
-16.1292 -15.8214

fval =
6.9034

The state of the random number generator, rngstate, is stored in output.rngstate. Reset the
stream by entering

stream = RandStream.getGlobalStream;
stream.State = output.rngstate.State;

If you now run simulannealbnd a second time, you get the same results.

Note If you do not need to reproduce your results, it is better not to set the states of RandStream,
so that you get the benefit of the randomness in these algorithms.

See Also
simulannealbnd

More About

. “Simulated Annealing”
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Minimization Using Simulated Annealing Algorithm

This example shows how to create and minimize an objective function using the simulated annealing
algorithm (simulannealbnd function) in Global Optimization Toolbox. For algorithmic details, see
“How Simulated Annealing Works” on page 12-13.

Simple Objective Function

The objective function to minimize is a simple function of two variables:

min f(x) = (4 - 2.1*x172 + x174/3)*x172 + x1*x2 + (-4 + 4*x272)*x2"2;
X

This function is known as "cam," as described in L.C.W. Dixon and G.P. Szego [1].

To implement the objective function calculation, the MATLAB file simple objective.m has the
following code:

type simple objective

function y = simple objective(x)
%SIMPLE OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.
x(1);
x(2);

4-2.1.%x1.72+x1.74./3) . *X1."2+X1. ¥ X2+ (-4+4 . *x2.72) . *x2.72;

1
2
y = (

X
X

All Global Optimization Toolbox solvers assume that the objective has one input x, where x has as
many elements as the number of variables in the problem. The objective function computes the scalar
value of the objective function and returns it in its single output argument y.

Minimize Using simulannealbnd

To minimize the objective function using simulannealbnd, pass in a function handle to the objective
function and a starting point x0 as the second argument. For reproducibility, set the random number
stream.

ObjectiveFunction = @simple objective;
x0 = [0.5 0.5]; % Starting point

rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0)

Optimization terminated: change in best function value less than options.FunctionTolerance.
X = 1Ix2

-0.0896 0.7130

fval = -1.0316
exitFlag = 1

output = struct with fields:
iterations: 2948
funccount: 2971
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message: 'Optimization terminated: change in best function value less than options
rngstate: [1x1 struct]
problemtype: 'unconstrained'
temperature: [2x1 double]
totaltime: 1.5698

simulannealbnd returns four output arguments:

* X — Best point found
+ fval — Function value at the best point
* exitFlag — Integer corresponding to the reason the function stopped

* output — Information about the optimization steps

Bound Constrained Minimization

You can use simulannealbnd to solve problems with bound constraints. Pass lower and upper
bounds as vectors. For each coordinate i, the solver ensures that lb(i) <= x(i) <= ub(i).
Impose the bounds —64 <= x(i) <= 64.

-64 -641;

b = [
b = [64 64];

Run the solver with the lower and upper bound arguments.

[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,x0,1b,ub);

.Funct:

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);

The number of iterations was : 2428

fprintf('The number of function evaluations was : %d\n', output.funccount);
The number of function evaluations was : 2447

fprintf('The best function value found was : %g\n', fval);

The best function value found was : -1.03163

The solver finds essentially the same solution as before.

Minimize Using Additional Arguments

Sometimes you want an objective function to be parameterized by extra arguments that act as
constants during the optimization. For example, in the previous objective function, you might want to
replace the constants 4, 2.1, and 4 with parameters that you can change to create a family of
objective functions. For more information, see “Passing Extra Parameters”.

Rewrite the objective function to take three additional parameters in a new minimization problem.

min f(x) = (a - b*x172 + x174/3)*x1"2 + x1*x2 + (-C + C*Xx272)*x2"2;
X
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a, b, and c are parameters to the objective function that act as constants during the optimization
(they are not varied as part of the minimization). To implement the objective function calculation, the
MATLAB file parameterized objective.m contains the following code:

type parameterized objective

function y = parameterized objective(x,pl,p2,p3)
%PARAMETERIZED OBJECTIVE Objective function for PATTERNSEARCH solver

% Copyright 2004 The MathWorks, Inc.
x1 x(1);

X2 x(2);
y = (pl-p2.*x1.72+x1.74./3) . *x1.72+x1.*X2+(-p3+p3.*x2.72) . *x2."2;

Again, you need to pass in a function handle to the objective function as well as a starting point as the
second argument.

simulannealbnd calls the objective function with just one argument X, but the objective function
has four arguments: X, a, b, and c. To indicate which variable is the argument, use an anonymous
function to capture the values of the additional arguments (the constants a, b, and c). Create a
function handle ObjectiveFunction to an anonymous function that takes one input x, but calls
parameterized objective with x, a, b and c. When you create the function handle
ObjectiveFunction, the variables a, b, and ¢ have values that are stored in the anonymous
function.

a=4; b=2.1; c
ObjectiveFunction
x0 = [0.5 0.5];

[x,fval] = simulannealbnd(ObjectiveFunction,x0)

4; % Define constant values
@(x) parameterized objective(x,a,b,c);

Optimization terminated: change in best function value less than options.FunctionTolerance.
X = 1Ix2

0.0898 -0.7127

fval = -1.0316

The solver finds essentially the same solution as before.

References

[1] Dixon, L. C. W,, and G .P. Szego (eds.). Towards Global Optimisation 2. North-Holland: Elsevier
Science Ltd., Amsterdam, 1978.

See Also
simulannealbnd

More About

. “Minimize Function with Many Local Minima” on page 12-5
. “What Is Simulated Annealing?” on page 12-2
. “Passing Extra Parameters”
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Simulated Annealing Options

This example shows how to create and manage options for the simulated annealing function
simulannealbnd using optimoptions in the Global Optimization Toolbox.

Optimization Problem Setup

simulannealbnd searches for a minimum of a function using simulated annealing. For this example
we use simulannealbnd to minimize the objective function dejong5fcn. This function is a real
valued function of two variables and has many local minima making it difficult to optimize. There is
only one global minimum at x =(-32,-32), where f(x) = 0.998. To define our problem, we must
define the objective function, start point, and bounds specified by the range -64 <= x(i) <= 64 for
each x(1i).

ObjectiveFunction = @dejong5fcn;
startingPoint = [-30 0];

b [-64 -64];

ub [64 64];

The function plotobjective in the toolbox plots the objective function over the range -64 <= x1
<= 64, -64 <= X2 <= 64.

plotobjective(ObjectiveFunction,[-64 64; -64 64]);
view(-15,150);
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Now, we can run the simulannealbnd solver to minimize our objective function.
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rng default % For reproducibility
[x,fval,exitFlag,output] = simulannealbnd(ObjectiveFunction,startingPoint,lb,ub);

Optimization terminated: change in best function value less than options.FunctionTolerance.

fprintf('The number of iterations was : %d\n', output.iterations);

The number of iterations was : 1095

fprintf('The number of function evaluations was : %d\n', output.funccount);
The number of function evaluations was : 1104

fprintf('The best function value found was : %g\n', fval);

The best function value found was : 2.98211

Note that when you run this example, your results may be different from the results shown above
because simulated annealing algorithm uses random numbers to generate points.

Adding Visualization

simulannealbnd can accept one or more plot functions through an 'options' argument. This feature
is useful for visualizing the performance of the solver at run time. Plot functions are selected using
optimoptions. The toolbox contains a set of plot functions to choose from, or you can provide your
own custom plot functions.

To select multiple plot functions, set the PLotFcn option via the optimoptions function. For this
example, we select saplotbestf, which plots the best function value every iteration,
saplottemperature, which shows the current temperature in each dimension at every iteration,
sa